【題目】如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為楊輝三角.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!楊輝三角中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+bnn為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項(xiàng)的系數(shù).例如,(a+b2a2+2ab+b2展開式中的系數(shù)1、21恰好對應(yīng)圖中第三行的數(shù)字;再如,(a+b3a3+3a2b+3ab2+b3展開式中的系數(shù)13、3、1恰好對應(yīng)圖中第四行的數(shù)字.請認(rèn)真觀察此圖,寫出(ab4的展開式,(ab4_____

【答案】a44a3b+6a2b24ab3+b4

【解析】

由(a+b=a+b,(a+b2=a2+2ab+b2,(a+b3=a3+3a2b+3ab2+b3可得(a+bn的各項(xiàng)展開式的系數(shù)除首尾兩項(xiàng)都是1外,其余各項(xiàng)系數(shù)都等于(a+bn-1的相鄰兩個(gè)系數(shù)的和,由此可得(a±b4的各項(xiàng)系數(shù)依次為1、4、6、4、1

解:(ab4a44a3b+6a2b24ab3+b4

故答案為:a44a3b+6a2b24ab3+b4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線的頂點(diǎn)為點(diǎn),與軸的負(fù)半軸交于點(diǎn),直線交拋物線W于另一點(diǎn),點(diǎn)的坐標(biāo)為

1)求直線的解析式;

2)過點(diǎn)軸,交軸于點(diǎn),若平分,求拋物線W的解析式;

3)若,將拋物線W向下平移個(gè)單位得到拋物線,如圖2,記拋物線的頂點(diǎn)為,與軸負(fù)半軸的交點(diǎn)為,與射線的交點(diǎn)為.問:在平移的過程中,是否恒為定值?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)和一次函數(shù)ymx+n的圖象過格點(diǎn)(網(wǎng)格線的交點(diǎn))B、P

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)觀察圖象,直接寫出一次函數(shù)值大于反比例函數(shù)值時(shí)x的取值范圍是:   

3)在圖中用直尺和2B鉛筆畫出兩個(gè)矩形(不寫畫法),要求每個(gè)矩形均需滿足下列兩個(gè)條件:

①四個(gè)頂點(diǎn)均在格點(diǎn)上,且其中兩個(gè)頂點(diǎn)分別是點(diǎn)O,點(diǎn)P;

②矩形的面積等于k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的外接圓,連結(jié)OA、OB、OC,延長BOAC交于點(diǎn)D,與交于點(diǎn)F,延長BA到點(diǎn)G,使得,連接FG.

備用圖

1)求證:FG的切線;

2)若的半徑為4.

①當(dāng),求AD的長度;

②當(dāng)是直角三角形時(shí),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ACE中,ACCE,⊙O經(jīng)過點(diǎn)A,C,且與邊AE,CE分別交于點(diǎn)DF,點(diǎn)B是劣弧AC上的一點(diǎn),且,連接ABBC,CD.

(1)求證:CDE≌△ABC

(2)填空:若AC為⊙O的直徑,則當(dāng)ACE的形狀為 時(shí),四邊形ABCD為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.

(1)求坡底C點(diǎn)到大樓距離AC的值;

(2)求斜坡CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東東玩具商店用500元購進(jìn)一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購進(jìn)第二批這種悠悠球,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了5元.

(1)求第一批悠悠球每套的進(jìn)價(jià)是多少元;

(2)如果這兩批悠悠球每套售價(jià)相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象過兩點(diǎn).

1)求此二次函數(shù)的解析式;

2)設(shè)二次函數(shù)的圖象與軸的另一個(gè)交點(diǎn)為,求點(diǎn)的坐標(biāo);

3)在同一坐標(biāo)系中畫出此二次函數(shù)及直線,并寫出當(dāng)在什么范圍內(nèi)時(shí),一次函數(shù)的值大于二次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖1,將三角板放在正方形上,使三角板的直角頂點(diǎn)與正方形的頂點(diǎn)重合,三角板的一邊交于點(diǎn).另一邊交的延長線于點(diǎn)

1)觀察猜想:線段與線段的數(shù)量關(guān)系是 ;

2)探究證明:如圖2,移動三角板,使頂點(diǎn)始終在正方形的對角線上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給予證明:若不成立.請說明理由:

3)拓展延伸:如圖3,將(2)中的正方形改為矩形,且使三角板的一邊經(jīng)過點(diǎn),其他條件不變,若、,求的值.

查看答案和解析>>

同步練習(xí)冊答案