【題目】如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個(gè)根,且OA>OB.
(1)求的值.
(2)若E為x軸上的點(diǎn),且S△AOE=,求經(jīng)過(guò)D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫(xiě)出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)y=x﹣或y=x+,△AOE∽△DAO;(3)存在,滿足條件的點(diǎn)有四個(gè):F1(﹣3,0);F2(3,8);F3(﹣,﹣);F4(﹣,).
【解析】
(1)解一元二次方程求出OA,OB的長(zhǎng)度,再利用勾股定理求出AB的長(zhǎng)度,再代入計(jì)算即可;
(2)先根據(jù)三角形的面積求出點(diǎn)E的坐標(biāo),并根據(jù)平行四邊形的對(duì)邊相等的性質(zhì)求出點(diǎn)D的坐標(biāo),然后利用待定系數(shù)法求解直線的解析式;分別求出兩三角形夾直角的兩對(duì)應(yīng)邊的比,如果相等,則兩三角形相似,否則不相似;
(3)根據(jù)菱形的性質(zhì),分AC與AF是鄰邊并且點(diǎn)F在射線AB上與射線BA上兩種情況,以及AC與AF分別是對(duì)角線的情況分別進(jìn)行求解計(jì)算.
解:(1)x2﹣7x+12=0,
(x﹣3)(x﹣4)=0,
∴x﹣3=0,x﹣4=0,
解得x1=3,x2=4,
∵OA>OB,
∴OA=4,OB=3,
在△AOB中,AB===5,
∴sin∠ABC=;
(2)根據(jù)題意,設(shè)E(x,0),則
S△AOE=×OA×x=×4x=,
解得x=,
∴E(,0)或(﹣,0),
∵四邊形ABCD是平行四邊形,
∴點(diǎn)D的坐標(biāo)是(6,4),
設(shè)經(jīng)過(guò)D、E兩點(diǎn)的直線的解析式為y=kx+b,
則①,
解得 ,
∴解析式為y=x﹣;
②,
解得,
解析式為: y=x+
在△AOE與△DAO中, ,
,
∴,
又∵∠AOE=∠OAD=90°,
∴△AOE∽△DAO;
(3)根據(jù)計(jì)算的數(shù)據(jù),OB=OC=3,
∴AO平分∠BAC,
①AC、AF是鄰邊,點(diǎn)F在射線AB上時(shí),AF=AC=5,
所以點(diǎn)F與B重合,
即F(﹣3,0),
②AC、AF是鄰邊,點(diǎn)F在射線BA上時(shí),M應(yīng)在直線AD上,且FC垂直平分AM,
點(diǎn)F(3,8).
③AC是對(duì)角線時(shí),做AC垂直平分線L,AC解析式為y=﹣x+4,直線L過(guò)(,2),且k值為(平面內(nèi)互相垂直的兩條直線k值乘積為﹣1),
L解析式為y=x+,聯(lián)立直線L與直線AB求交點(diǎn),
∴F(﹣,﹣),
④AF是對(duì)角線時(shí),過(guò)C做AB垂線,垂足為N,根據(jù)等積法求出CN=,勾股定理得出,AN=,做A關(guān)于N的對(duì)稱點(diǎn)即為F,AF=,過(guò)F做y軸垂線,垂足為G,FG=,
∴F(﹣,).
綜上所述,滿足條件的點(diǎn)有四個(gè):F1(﹣3,0);F2(3,8);F3(﹣,﹣);F4(﹣,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,已知購(gòu)進(jìn)甲商品2件和乙商品1件共需50元,購(gòu)進(jìn)甲商品1件和乙商品2件共需70元.
(1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)決定甲商品以每件20元出售,乙商品以每件50元出售,為滿足市場(chǎng)需求,需購(gòu)進(jìn)甲、乙兩種商品共60件,若要保證獲利不低于1000元,則甲商品最多能購(gòu)進(jìn)多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,窗簾的褶皺是指按照窗戶的實(shí)際寬度將窗簾布料以一定比例加寬的做法,褶皺之后的窗簾更能彰顯其飄逸、靈動(dòng)的效果.其中,窗寬度的1.5倍為平褶皺,窗寬度的2倍為波浪褶皺.如圖②,小莉房間的窗戶呈長(zhǎng)方形,窗戶的寬度(AD)比高度(AB)的少0.5m,某種窗簾的價(jià)格為120元/m2.如果以波浪褶皺的方式制作該種窗簾比以平褶皺的方式費(fèi)用多180元,求小莉房間窗戶的寬度與高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將等腰Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)15°得到△AB′C′,若AC=1,則圖中陰影部分面積為( 。
A.B.3C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市紅領(lǐng)服飾有限公司生產(chǎn)了一款夏季服裝,通過(guò)實(shí)驗(yàn)商店和網(wǎng)上商店兩種途徑進(jìn)行銷售,銷售一段時(shí)間后,該公司對(duì)這種商品的銷售情況,進(jìn)行了為期30天的跟蹤調(diào)查,其中實(shí)體商店的日銷售量y1(百件)與時(shí)間t(t為整數(shù),單位:天)的部分對(duì)應(yīng)值如表所示:
時(shí)間t(天) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
日銷售量yt(百件) | 0 | 25 | 40 | 45 | 40 | 25 | 0 |
(1)請(qǐng)你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)能反映y1與t的變化規(guī)律,并求出y1與t的函數(shù)關(guān)系式及自變量t的取值范圍;
(2)網(wǎng)上商店的日銷售量y2(百件)與時(shí)間t(t為整數(shù),單位:天)的關(guān)系如圖所示.求y2與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(3)在跟蹤調(diào)查的30天中,設(shè)實(shí)體商店和網(wǎng)上商店的日銷售總量為y(百件),求y與t的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),日銷售總量y達(dá)到最大,并求出此時(shí)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+6與x軸、y軸分別相交于點(diǎn)E、F,點(diǎn)A的坐標(biāo)為(﹣6,0),P(x,y)是直線y=x+6上一個(gè)動(dòng)點(diǎn).
(1)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,試寫(xiě)出△OPA的面積s與x的函數(shù)關(guān)系式;
(2)當(dāng)P運(yùn)動(dòng)到什么位置,△OPA的面積為,求出此時(shí)點(diǎn)P的坐標(biāo);
(3)過(guò)P作EF的垂線分別交x軸、y軸于C、D.是否存在這樣的點(diǎn)P,使△COD≌△FOE?若存在,直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo)(不要求寫(xiě)解答過(guò)程);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=ax+b(a,b為常數(shù),a≠0)的圖象與x軸,y軸分別交于點(diǎn)A,B,且與反比例函數(shù)y=(k為常數(shù),k≠0)的圖象在第二象限內(nèi)交于點(diǎn)C,作CD⊥x軸于,若OA=OD=OB=3.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)觀察圖象直接寫(xiě)出不等式0<ax+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店欲購(gòu)進(jìn) A、B 兩種商品,若購(gòu)進(jìn) A 種商品 5 件和 B 種商品 4 件需 300 元;購(gòu)進(jìn) A 種商品 6 件和 B 種商 品 8 件需 440 元.
(1)求 A、B 兩種商品每件的進(jìn)價(jià)分別為多少元?
(2)若該商店每銷售 1 件 A 種商品可獲利 8 元,每銷售 1 件 B 種商品可獲利 6 元,該商店準(zhǔn)備購(gòu)進(jìn) A、B 兩種商 品共 50 件,且這兩種商品全部售出后總獲利超過(guò) 344 元,則至少購(gòu)進(jìn)多少件 A 商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某茶葉專賣店經(jīng)銷一種日照綠茶,每千克成本元,據(jù)銷售人員調(diào)查發(fā)現(xiàn),每月的銷售量(千克)與銷售單價(jià)(元/千克)之間存在如圖所示的變化規(guī)律.
求每月銷售量與銷售單價(jià)之間的函數(shù)關(guān)系式.
若某月該茶葉點(diǎn)銷售這種綠茶獲得利潤(rùn)元,試求該月茶葉的銷售單價(jià)為多少元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com