在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x-1)的圖象交于點(diǎn)A(1,k)和點(diǎn)B(-1,-k).
(1)當(dāng)k=-2時(shí),求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時(shí),求k的值.
【答案】
分析:(1)當(dāng)k=-2時(shí),即可求得點(diǎn)A的坐標(biāo),然后設(shè)反比例函數(shù)的解析式為:y=
,利用待定系數(shù)法即可求得答案;
(2)由反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,可得k<0,又由二次函數(shù)y=k(x
2+x-1)的對(duì)稱軸為x=-
,可得x<-
時(shí),才能使得y隨著x的增大而增大;
(3)由△ABQ是以AB為斜邊的直角三角形,A點(diǎn)與B點(diǎn)關(guān)于原點(diǎn)對(duì)稱,利用直角三角形斜邊上的中線等于斜邊的一半,即可得OQ=OA=OB,又由Q(-
,-
k),A(1,k),即可得
=
,繼而求得答案.
解答:解:(1)當(dāng)k=-2時(shí),A(1,-2),
∵A在反比例函數(shù)圖象上,
∴設(shè)反比例函數(shù)的解析式為:y=
,
代入A(1,-2)得:-2=
,
解得:m=-2,
∴反比例函數(shù)的解析式為:y=-
;
(2)∵要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,
∴k<0,
∵二次函數(shù)y=k(x
2+x-1)=k(x+
)
2-
k,對(duì)稱軸為:直線x=-
,
要使二次函數(shù)y=k(x
2+x-1)滿足上述條件,在k<0的情況下,x必須在對(duì)稱軸的左邊,
即x≤-
時(shí),才能使得y隨著x的增大而增大,
∴綜上所述,k<0且x≤-
;
(3)由(2)可得:Q(-
,-
k),
∵△ABQ是以AB為斜邊的直角三角形,A點(diǎn)與B點(diǎn)關(guān)于原點(diǎn)對(duì)稱,(如圖是其中的一種情況)
∴原點(diǎn)O平分AB,
∴OQ=OA=OB,
作AD⊥OC,QC⊥OC,
∴OQ=
=
,
∵OA=
=
,
∴
=
,
解得:k=±
.
點(diǎn)評(píng):此題考查了二次函數(shù)的性質(zhì)、反比例函數(shù)的性質(zhì)以及直角三角形的性質(zhì)等知識(shí).此題綜合性較強(qiáng),難度較大,注意掌握待定系數(shù)法求函數(shù)解析式,注意數(shù)形結(jié)合思想的應(yīng)用.