【題目】在等腰Rt△ABC中,∠BAC=90°,AB=AC,點P為AC上一點,M為BC上一點.
(1)若AM⊥BP于點E.
①如圖1,BP為△ABC的角平分線,求證:PA=PM;
②如圖2,BP為△ABC的中線,求證:BP=AM+MP.
(2)如圖3,若點N在AB上,AN=CP,AM⊥PN,求的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=45°,點M,N在邊OA上,OM=x,ON=x+4,點P是邊OB上的點.若使點P,M,N構(gòu)成等腰三角形的點P恰好有三個,則x的值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)a,我們規(guī)定:用符號[]表示不大于的最大整數(shù),稱[]為a的根整數(shù),例如:[]=3,[]=3.
(1)仿照以上方法計算:[]= ;[]= .
(2)若[]=1,寫出滿足題意的x的整數(shù)值 .
(3)如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2次[]=3→[]=1,這時候結(jié)果為1.對145連續(xù)求根整數(shù), 次之后結(jié)果為1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙牌中,AB=8cm,BC=6cm,AC=5cm,沿著過△ABC的頂點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,則△AED周長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx﹣2與雙曲線y=-(x<0)交于點A,與x軸交于點C,與y軸交于點D.AB⊥x軸于點B,AE⊥y軸于點E, △ABC的面積為2.
(1)直接寫出四邊形OCAE的面積;
(2)求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、C、D、E在同一條直線上,已知AB = FC,AD = FE, BC=DE.
(1)求證:△ABD≌△FCE.
(2)AB與FC的位置關(guān)系是_________(請直接寫出結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD>AB,點P是CD邊上的任意一點(不含C,D兩端點),過點P作PF∥BC,交對角線BD于點F.
(1)如圖1,將△PDF沿對角線BD翻折得到△QDF,QF交AD于點E.求證:△DEF是等腰三角形;
(2)如圖2,將△PDF繞點D逆時針方向旋轉(zhuǎn)得到△P'DF',連接P'C,F(xiàn)'B.設(shè)旋轉(zhuǎn)角為α(0°<α<180°).
①若0°<α<∠BDC,即DF'在∠BDC的內(nèi)部時,求證:△DP'C∽△DF'B.
②如圖3,若點P是CD的中點,△DF'B能否為直角三角形?如果能,試求出此時tan∠DBF'的值,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x+1交x軸于點A,交y軸于點A1,A2,A3,…在直線l上,點B1,B2,B3…在x軸的正半軸上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均為等腰直角三角形,直角頂點都在x軸上,則第n個等腰直角三角形AnBn﹣1Bn,頂點Bn的坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com