如圖,矩形ABCD中,由8個面積均為1的小正方形組成的L型模板如圖放置,則矩形ABCD的周長為         _ .

試題分析:根據(jù)AAS可以證明△ABE≌△ECF,得AB=CE,BE=CF;根據(jù)兩角對應(yīng)相等,可以證明△ECF∽△FDG,則DF:CE=FG:EF=1:2.設(shè)BE=x,則AB=2x,根據(jù)勾股定理求得x的值,進而求得矩形的面積.
根據(jù)等角的余角相等,得
∠BAE=∠CEF=∠DFG.
又∠B=∠C=∠D=90°,AE=EF=4,F(xiàn)G=2,
∴△ABE≌△ECF,△ECF∽△FDG.
∴AB=CE,BE=CF,DF:CE=FG:EF=1:2.
設(shè)BE=x,則AB=2x,根據(jù)勾股定理,得
x2+4x2=16,
x=
則矩形ABCD的面積為:2x×3x=6x2=
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀理解:如圖,已知直線m∥n,A、B 為直線n上兩點,C、D為直線m上兩點,容易證明:△ABC的面積=△ABD的面積.
根據(jù)上述內(nèi)容解決以下問題:
已知正方形ABCD的邊長為4,G是邊CD上一點,以CG為邊作正方形GCEF.
(1)如圖(2), 當點G是CD的中點時,△BDF的面積為      
(2)如圖(3), 當CG = a時, 則△BDF的面積為      ,并說明理由.

探索應(yīng)用:小張家有一塊長方形的土地如圖(4),由于修建高速公路被占去一塊三角形BCP區(qū)域.現(xiàn)決定在DP右側(cè)補給小張一塊土地,補償后,土地變?yōu)樗倪呅蜛BMD,要求補償后的四邊形ABMD的面積與原來形長方形ABCD的面積相等且M在射線BP上,請你在圖中畫出M點的位置,并簡要敘述做法.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,E為BC邊上的一點,連接AE、BD交于點F,AE=AB.
(1)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
(2)若AB=10,BE=2EC,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在□ABCD中,點M為邊AD的中點,過點C作AB的垂線交AB于點E,連接ME.
(1)若AM=2AE=4,∠BCE=30°,求□ABCD的面積;
(2)若BC=2AB,求證:∠EMD=3∠MEA.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,AE、CF分別垂直于過頂點B的直線l,垂足分別為E、F.
求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

D、E分別是△ABC的邊AB、AC的中點.O是平面上的一動點,連接OB、OC,G、F分別是OB、OC的中點,順次連接點D、E、F、G.
(1)如圖1,當點O在△ABC內(nèi)時,求證:四邊形DEFG是平行四邊形;
(2)若點O在△ABC外,其余條件不變,點O的位置應(yīng)滿足什么條件,能使四邊形DEFG是菱形?請在畫2中補全圖形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在矩形中,點A的坐標是(-2,1),點C的縱坐標是4,則B、C兩點的坐標為(  )

A.(,)、(,)             B.(,)、(
C.(,)、(,)              D.(,) 、(,

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在斜邊為3的等腰直角三角形OAB中,作內(nèi)接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作內(nèi)接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作內(nèi)接正方形A3B3C3D3…依次作下去,則第2014個正方形A2014B2014C2014D2014的邊長是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在□ABCD中,AC與BD相交于點O,則下列結(jié)論不一定成立的是…(    )
A.BO=DOB.CD=ABC.∠BAD=∠BCDD.AC=BD

查看答案和解析>>

同步練習冊答案