【題目】如圖,在△ABC中,ABAC30cm,DEAB的垂直平分線,分別交AB、ACD、E兩點(diǎn).(1)若∠C70°,則∠BEC_____;(2)若BC20cm,則△BCE的周長是_____cm

【答案】180°; 250

【解析】

1)先根據(jù)等腰三角形的性質(zhì)得出∠ABC的度數(shù),再由三角形內(nèi)角和定理求出∠A的度數(shù),根據(jù)線段垂直平分線的性質(zhì)求出AEBE,故可得出∠ABE的度數(shù),進(jìn)而可得出結(jié)論;

2)根據(jù)AEBD可知,BE+CEAE+CEAC,由此可得出結(jié)論.

解:(1△ABC中,ABAC30cm,∠C70°

∴∠ABC∠C70°,

∴∠A180°∠ABC∠C180°70°70°40°

∵DEAB的垂直平分線,

∴AEBE,

∴∠ABE∠A40°,

∴∠EBC∠ABC∠ABE70°40°30°

∴∠BEC180°∠C∠EBC180°70°30°80°

故答案為:80°;

2由(1)知AEBE,

∴BE+CEAE+CEAC30cm,

∵BC20cm,

∴△BCE的周長=AC+BC30+2050cm).

故答案為:50

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,ECD上一動(dòng)點(diǎn),AEBDF,過FFHAEH,過HGHBDG,下列有四個(gè)結(jié)論:①AF=FH,②∠HAE=45°,BD=2FG,④△CEH的周長為定值,其中正確的結(jié)論有(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是邊長為1的菱形ABCD對角線AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)M,N分別是AB,BC邊上的中點(diǎn),則MP+PN的最小值是( 。

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體的底面是邊長為2cm的正方形,高是6cm

1)如果用一根細(xì)線從點(diǎn)A開始經(jīng)過4個(gè)側(cè)面圍繞一圈到達(dá)點(diǎn)B.那么所用的細(xì)線最短長度是多少厘米?

2)如果從A點(diǎn)開始經(jīng)過4個(gè)側(cè)面纏繞2圈到達(dá)點(diǎn)B,那么所用細(xì)線最短長度是多少厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BC5,高AD、BE相交于點(diǎn)O,BDCD,且AEBE

1)求線段AO的長;

2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿線段OA以每秒1個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿射線BC以每秒4個(gè)單位長度的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,POQ的面積為S,請用含t的式子表示S,并直接寫出相應(yīng)的t的取值范圍;

3)在(2)的條件下,點(diǎn)F是直線AC上的一點(diǎn)且CFBO.是否存在t值,使以點(diǎn)B、OP為頂點(diǎn)的三角形與以點(diǎn)F、C、Q為頂點(diǎn)的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)12018按一定規(guī)律排列如下表:

平移表中帶陰影的方框,方框中三個(gè)數(shù)的和可能是(  )

A. 2019 B. 2018 C. 2016 D. 2013

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

善于思考的小聰在解方程組時(shí),發(fā)現(xiàn)方程組①和②之間存在一定關(guān)系,他的解法如下:

解:將方程②變形為:2x-3y-2y=5③,

把方程①代入方程③得:3-2y=5,

解得y=-1

y=-1代入方程①得x=0

∴原方程組的解為

小聰?shù)倪@種解法叫整體換元法.請用整體換元法完成下列問題:

1)解方程組:;

①把方程①代入方程②,則方程②變?yōu)?/span>______;

②原方程組的解為______

2)解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA是⊙O的切線,A是切點(diǎn),AC是直徑,AB是弦,連接PB、PC,PCAB于點(diǎn)E,且PA=PB.

(1)求證:PB是⊙O的切線;

(2)若∠APC=3BPC,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1的坐標(biāo)為(1,2),以點(diǎn)O為圓心,以OA1長為半徑畫弧,交直線y=x于點(diǎn)B1.過B1點(diǎn)作B1A2y軸,交直線y=2x于點(diǎn)A2,以O為圓心,以OA2長為半徑畫弧,交直線y=x于點(diǎn)B2;過點(diǎn)B2B2A3y軸,交直線y=2x于點(diǎn)A3,以點(diǎn)O為圓心,以OA3長為半徑畫弧,交直線y=x于點(diǎn)B3;過B3點(diǎn)作B3A4y軸,交直線y=2x于點(diǎn)A4,以點(diǎn)O為圓心,以OA4長為半徑畫弧,交直線y=x于點(diǎn)B4,…按照如此規(guī)律進(jìn)行下去,點(diǎn)B2018的坐標(biāo)為__

查看答案和解析>>

同步練習(xí)冊答案