如圖所示,△ABC是直角三角形,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接DE.
(1)求證:DE與⊙O相切;
(2)若⊙O的半徑為,DE=3,求AE.

【答案】分析:(1)根據(jù)切線的判定定理只需證明OE⊥DE即可;
(2)根據(jù)(1)中的證明過程,會發(fā)現(xiàn)BC=2DE,根據(jù)勾股定理求得AC的長,進(jìn)一步求得直角三角形斜邊上的高BE,最后根據(jù)勾股定理求得AE的長.
解答:解:(1)證明:連接OE,BE,
∵AB是直徑.
∴BE⊥AC.
∵D是BC的中點(diǎn),
∴DE=DB.
∴∠DBE=∠DEB.
又OE=OB,
∴∠OBE=∠OEB.
∴∠DBE+∠OBE=∠DEB+∠OEB.
即∠ABD=∠OED.
但∠ABC=90°,
∴∠OED=90°.
∴DE是⊙O的切線.

(2)法1:∵∠ABC=90°,AB=2,BC=2DE=6,
∴AC=4
∴BE=3.
∴AE=
法2:∵(8分)
(10分)
.(12分)
點(diǎn)評:此題主要考查切線的判定及勾股定理等知識點(diǎn)的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,△ABC是等邊三角形,延長BC至E,延長BA至F,使AF=BE,連接CF、EF,過點(diǎn)F作直線FD⊥CE于D,試發(fā)現(xiàn)∠FCE與∠FEC的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖所示,△ABC是正三角形,△A1B1 C1的三條邊A1B1、BlC1、C1A1交△ABC各邊分別于C2、C3,A2、A3,B2、B3.已知A2C3=C2B3=B2A3,且C2C32+B2B32=A2A32.請你證明:AlB1⊥C1A1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,△ABC是邊長為a的正三角形紙張,今在各角剪去一個三角形,使得剩下的六邊形PQRSTU為正六邊形,則此正六邊形的周長為何(  )
A、2a
B、3a
C、
3
2
a
D、
9
4
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖所示,△ABC是等邊三角形,AQ=PQ,PR⊥AB于R點(diǎn),PS⊥AC于S點(diǎn),PR=PS,則四個結(jié)論:①點(diǎn)P在∠A的平分線上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正確的結(jié)論是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黃陂區(qū)模擬)如圖所示,△ABC是⊙O的內(nèi)接正三角形,四邊形DEFG是⊙O的內(nèi)接正方形,EF∥BC,則∠AOF為(  )

查看答案和解析>>

同步練習(xí)冊答案