【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著。書中有下列問題“今有勾八步,股十五步。問勾中容圓徑幾何?”其意思為今有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形能容納的圓形(內(nèi)切圓)直徑是步。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點A按順時針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點B的對應(yīng)點為點D,點C的對應(yīng)點為點E,連接BD,BE.
(1)如圖,當(dāng)α=60°時,延長BE交AD于點F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉(zhuǎn)過程中,過點D作DG垂直于直線AB,垂足為點G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無公共點時,請直接寫出BE+CE的值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便作答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,AC與BD,相交于點O,點E、F是直線AD上兩動點,且AE=DF,CF所在直線與對角線BD所在直線交于點G,連接AG,直線AG交BE于點H.
(1)如圖1,當(dāng)點E、F在線段AD上時,求證:∠DAG=∠DCG;
(2)如圖1,猜想AG與BE的位置關(guān)系,并加以證明;
(3)如圖2,在(2)條件下,連接HO,試說明HO平分∠BHG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個多面體的表面展開圖,每個面上都標(biāo)注了字母(字母在多面體的外表面),請根據(jù)要求回答問題.
(1)如果D面在多面體的左面,那么F面在哪里?
(2)B面和哪一面是相對的面?
(3)如果C面在前面,從上面看到的是D面,那么從左面能看到哪一面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.
(1)求證:此方程總有兩個實數(shù)根;
(2)若此方程有一個根大于0且小于1,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線BD上有一點C,則:
(1)∠1和∠ABC是直線AB,CE被直線_____所截得的____角;
(2)∠2和∠BAC是直線CE,AB被直線____所截得的_____角;
(3)∠3和∠ABC是直線_____、_____被直線_____所截得的____角;
(4)∠ABC和∠ACD是直線____、_____被直線_____所截得的角;
(5)∠ABC和∠BCE是直線_____、______被直線所截得的_____角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知動點P以每秒2㎝的速度沿圖甲的邊框按從的路徑移動,相應(yīng)的△ABP的面積S關(guān)于時間t的函數(shù)圖象如圖乙.若AB=6,試回答下列問題:
(1)圖甲中的BC長是多少?
(2)圖乙中的a是多少?
(3)圖甲中的圖形面積的多少?
(4)圖乙的b是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b(k≠0)的圖象過點(0,2),且與兩坐標(biāo)軸圍成的三角形面積為2,求此一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l和雙曲線 (k>0)交于A,B兩點,P是線段AB上的點(不與A,B重合),過點A,B,P分別向x軸作垂線,垂足分別是C,D,E,連接OA,OB,OP,設(shè)△AOC面積是S1 , △BOD面積是S2 , △POE面積是S3 , 則( )
A.S1<S2<S3
B.S1>S2>S3
C.S1=S2>S3
D.S1=S2<S3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com