【題目】三臺縣教育和體育局為幫助萬福村李大爺精準脫貧,在網(wǎng)上銷售李大爺自己手工做的竹簾,其成本為每張40元,當售價為每張80元時,每月可銷售100.為了吸引更多顧客,采取降價措施.據(jù)市場調(diào)查反映:銷售單價每降1元,則每月可多銷售5.設每張竹簾的售價為元(為正整數(shù)),每月的銷售量為

1)直接寫出的函數(shù)關(guān)系式;

2)設該網(wǎng)店每月獲得的利潤為元,當銷售單價降低多少元時,每月獲得的利潤最大,最大利潤是多少?

3)李大爺深感扶貧政策給自己帶來的好處,為了回報社會,他決定每月從利潤中捐出200元資助貧困學生.為了保證捐款后每月利潤不低于4220元,求銷售單價應該定在什么范圍內(nèi)?

【答案】1;(2)當降價10元時,每月獲得最大利潤為4500元;(3

【解析】

1)根據(jù)“銷售單價每降1元,則每月可多銷售5張”寫出的函數(shù)關(guān)系式即可;

2)根據(jù)題意,利用利潤=每件的利潤×數(shù)量即可得出w關(guān)于x的表達式,再利用二次函數(shù)的性質(zhì)即可得到最大值;

3)先求出每月利潤為4220元時對應的兩個x值,再根據(jù)二次函數(shù)的圖象和性質(zhì)即可得出答案.

1)由題意可得:整理得;

2)由題意,得:

.

有最大值

即當時,

∴應降價(元)

答:當降價10元時,每月獲得最大利潤為4500元;

3)由題意,得:

解之,得:,,

∵拋物線開口向下,對稱軸為直線

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】[閱讀理解]

構(gòu)造“平行八字型”全等三角形模型是證明線段相等的一種方法,我們常用這種方法證明線段的中點問題.

例如:如圖,D是△ABCAB上一點,EAC的中點,過點CCFAB,交DE的延長線于點F,則易證E是線段DF的中點.

[經(jīng)驗運用]

請運用上述閱讀材料中所積累的經(jīng)驗和方法解決下列問題.

1)如圖1,在正方形ABCD中,點EAB上,點FBC的延長線上,且滿足AECF,連接EFAC于點G

求證:GEF的中點;

CGBE

[拓展延伸]

2)如圖2,在矩形ABCD中,AB2BC,點EAB上,點FBC的延長線上,且滿足AE2CF,連接EFAC于點G.探究BECG之間的數(shù)量關(guān)系,并說明理由;

3)如圖3,若點EBA的延長線上,點F在線段BC上,DFAC于點H,BF2CF1,( 2)中的其它條件不變,請直接寫出GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兒童用藥的劑量常常按他們的體重來計算,某種藥品,體重的兒童,每次正常服用量為;體重的兒童每次正常服用量為;體重在范圍內(nèi)時,每次正常服用量是兒童體重的一次函數(shù)中,現(xiàn)實中,該藥品每次實際服用量可以比每次正常服用略高一些,但不能超過正常服用量的12倍,否則會對兒童的身體造成較大損害.

1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)若該藥品的一種包裝規(guī)格為/袋,求體重在什么范圍的兒童生病時可以一次服下一袋藥?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)計劃對面積為3600m2的區(qū)域進行綠化,經(jīng)投標由甲乙兩個工程隊來完成,已知甲隊4天能完成綠化的面積等于乙隊8天完成綠化的面積,甲隊3天能完成綠化的面積比乙隊5天能完成綠化面積多50m2

(1)求甲、乙兩工程隊每天能完成綠化的面積;

(2)若甲隊每天化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,要使這次綠化的總費用不超過40萬元,則至少應安排乙工程隊綠化多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖像交點A.B,與x軸相交于點C,其中點A的坐標為(-2,4),點B的縱坐標為2.

1)當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值.(直接寫出來)

2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(抗擊疫情)為了遏制新型冠狀病毒疫情的蔓延勢頭,各地教育部門在推遲各級學校開學時間的同時提出聽課不停學的要求,各地學校也都開展了遠程網(wǎng)絡教學,某校集中為學生提供四類在線學習方式:在線閱讀、在線聽課、在線答疑、在線討論,為了了解學生的需求,該校通過網(wǎng)絡對本校部分學生進行了你對哪類在線學習方式最感興趣的調(diào)查,并根據(jù)結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖。

1)本次調(diào)查的人數(shù)有多少人?

2)請補全條形圖;

3)請求出“在線答疑”在扇形圖中的圓心角度數(shù);

4)小寧和小娟都參加了遠程網(wǎng)絡教學活動,請求出小寧和小娟選擇同一種學習方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC6BC8,矩形CDEF的頂點E在邊AB上,D,F兩點分別在邊AC,BC上,且,將矩形CDEF以每秒1個單位長度的速度沿射線CB方向勻速運動,當點C與點B重合時停止運動,設運動時間為t秒,矩形CDEF與△ABC重疊部分的面積為S,則反映St的函數(shù)關(guān)系的圖象為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線平分為射線上一點,以為圓心,10為半徑作,分別與兩邊相交于、,連結(jié),此時有

1)求證:;

2)若,求弦的長;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著技術(shù)的發(fā)展,人們對各類產(chǎn)品的使用充滿期待.某公司計劃在某地區(qū)銷售第一款產(chǎn)品,根據(jù)市場分析,該產(chǎn)品的銷售價格將隨銷售周期的變化而變化.設該產(chǎn)品在第為正整數(shù))個銷售周期每臺的銷售價格為元,之間滿足如圖所示的一次函數(shù)關(guān)系.

1)求之間的關(guān)系式;

2)設該產(chǎn)品在第個銷售周期的銷售數(shù)量為(萬臺),的關(guān)系可用來描述.根據(jù)以上信息,試問:哪個銷售周期的銷售收入最大?此時該產(chǎn)品每臺的銷售價格是多少元?

查看答案和解析>>

同步練習冊答案