【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),平行四邊形ABCD的邊BC在x軸上,D點(diǎn)在y軸上,C點(diǎn)坐標(biāo)為(2,0),BC=6,∠BCD=60°,點(diǎn)E是AB上一點(diǎn),AE=3EB,⊙P過(guò)D,O,C三點(diǎn),拋物線y=ax2+bx+c過(guò)點(diǎn)D,B,C三點(diǎn).
(1)求拋物線的解析式;
(2)求證:ED是⊙P的切線;
(3)若點(diǎn)M為此拋物線的頂點(diǎn),平面上是否存在點(diǎn)N,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x2﹣x+2;(2)證明見(jiàn)解析(3)點(diǎn)N的坐標(biāo)為(﹣5,)、(3,)、(﹣3,﹣)
【解析】
試題分析:(1)根據(jù)題意求得B的坐標(biāo),解直角三角形求得D的坐標(biāo),然后根據(jù)待定系數(shù)法即可求得;
(2)根據(jù)平行四邊形的性質(zhì)和直角三角形的性質(zhì)求得AB=4,根據(jù)AE=3EB求得AE=3,易證得△AED∽△COD,得出∠ADE=∠CDO,由∠ADE+∠ODE=90°得出∠CDO+∠ODE=90,即可證得結(jié)論;
(3)把拋物線解析式化成頂點(diǎn)式,求得頂點(diǎn)M的坐標(biāo),然后結(jié)合B、D的坐標(biāo)即可求得.
試題解析:(1)∵C(2,0),BC=6,
∴B(﹣4,0),
在Rt△OCD中,∵tan∠OCD=,
∴OD=2tan60°=2,
∴D(0,2),
設(shè)拋物線的解析式為y=a(x+4)(x﹣2),
把D(0,2)代入得a4(﹣2)=2,解得a=﹣,
∴拋物線的解析式為y=﹣(x+4)(x﹣2)=﹣x2﹣x+2;
(2)在Rt△OCD中,CD=2OC=4,
∵四邊形ABCD為平行四邊形,
∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,
∵AE=3BE,
∴AE=3,
∴,
∵sin∠BCD=,
∴,
∵四邊形ABCD是平行四邊形,
∴∠DAE=∠DCB=60°,
∴△AED∽△COD,
∴∠ADE=∠CDO,
而∠ADE+∠ODE=90°
∴∠CDO+∠ODE=90°,
∴CD⊥DE,
∵∠DOC=90°,
∴CD為⊙P的直徑,
∴ED是⊙P的切線;
(3)存在.
∵y=﹣x2﹣x+2=﹣(x+1)2+
∴M(﹣1,),
而B(niǎo)(﹣4,0),D(0,2),如圖2,
當(dāng)BM為平行四邊形BDMN的對(duì)角線時(shí),點(diǎn)D向左平移4個(gè)單位,再向下平移2個(gè)單位得到點(diǎn)B,
則點(diǎn)M(﹣1,)向左平移4個(gè)單位,再向下平移2個(gè)單位得到點(diǎn)N1(﹣5,);
當(dāng)DM為平行四邊形BDMN的對(duì)角線時(shí),點(diǎn)B向右平移3個(gè)單位,
再向上平移個(gè)單位得到點(diǎn)M,則點(diǎn)D(0,2)向右平移3個(gè)單位,再向上平移個(gè)單位得到點(diǎn)N2(3,);
當(dāng)BD為平行四邊形BDMN的對(duì)角線時(shí),點(diǎn)M向左平移3個(gè)單位,
再向下平移個(gè)單位得到點(diǎn)B,則點(diǎn)D(0,2)向右平移3個(gè)單位,再向下平移個(gè)單位得到點(diǎn)N3(﹣3,﹣).
綜上所述,點(diǎn)N的坐標(biāo)為(﹣5,)、(3, )、(﹣3,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A點(diǎn)的坐標(biāo)為(n+3,3),B點(diǎn)的坐標(biāo)為(n﹣4,n),AB∥x軸,則線段AB的長(zhǎng)為( 。
A. 5B. 6C. 7D. 13
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過(guò)點(diǎn)D作DE⊥AF,垂足為點(diǎn)E.
(1)求證:DE=AB.
(2)以D為圓心,DE為半徑作圓弧交AD于點(diǎn)G.若BF=FC=1,試求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題:
(1) ;(2)-2xy(3x2+2xy-y2)
(3) (3y+2)(y-4)-3(y-2)(y-3);(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】最小的正整數(shù)是_____,最大的負(fù)整數(shù)是_____,最小的自然數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三角形三個(gè)內(nèi)角度數(shù)的比為2:3:7,那么這個(gè)三角形是( 。
A. 鈍角三角形B. 銳角三角形C. 直角三角形D. 等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)計(jì)調(diào)查問(wèn)卷時(shí)要注意( 。
①問(wèn)題應(yīng)盡量簡(jiǎn)明;②不要提問(wèn)被調(diào)查者不愿意回答的問(wèn)題;③提問(wèn)不能涉及提問(wèn)者的個(gè)人觀點(diǎn);④提供的選擇答案要盡可能全面;⑤問(wèn)卷應(yīng)簡(jiǎn)潔.
A.①②④⑤
B.①③④⑤
C.①②③④⑤
D.①⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com