【題目】某公司欲招聘一名公關(guān)人員,對甲、乙、丙、丁四位候選人進(jìn)行了面試和筆試,他們的成績?nèi)绫恚?/span>

候選人

測試成績

(百分制)

面試

86

92

90

83

筆試

90

83

83

92

如果公司認(rèn)為,作為公關(guān)人員面試的成績應(yīng)該比筆試的成績更重要,并分別賦予它們的權(quán).根據(jù)四人各自的平均成績,公司將錄。ā 。

A. B. C. D.

【答案】B

【解析】

首先根據(jù)加權(quán)平均數(shù)的含義和求法,分別求出三人的平均成績各是多少;然后比較大小,判斷出誰的平均成績最高,即可判斷出誰將被公司錄。

甲的平均成績=(90×4+86×6)÷10=876÷10=87.6()

乙的平均成績=(83×4+92×6)÷10=884÷10=88.4()

丙的平均成績=(83×4+90×6)÷10=872÷10=87.2()

丁的平均成績=(92×4+83×6)÷10=866÷10=86.6()

88.4>87.6>87.2>86.6,

∴乙的平均成績最高,

∴公司將錄取乙.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABCD 中,∠ABC、∠ADC的平分線分別交AD、BC于點E、F.

(1)求證:四邊形EBFD是平行四邊形;

(2)小明在完成(1)的證明后繼續(xù)進(jìn)行了探索.連接AF、CE,分別交BE、FD于點G、H,得到四邊形EGFH.此時,他猜想四邊形EGFH是平行四邊形,請在框圖(圖2)中補全他的證明思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCF中,∠ACB90°,點EAB邊的中點,點F恰是點E關(guān)于AC所在直線的對稱點.

(1)證明:四邊形CFAE為菱形;

(2)連接EFAC于點O,若BC10,求線段OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,∠ACB90°,ACBC,AEBC邊上的中線,過點CAE 的垂線CF垂足為F,過點BBD⊥BCCF的延長線于點D.

(1)求證:AECD.

(2)AC12 cm,BD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某種品牌小汽車的耗油量,我們對這種車在高速公路上做了耗油試驗,并把試驗的數(shù)據(jù)記錄下來,制成下表:

汽車行駛時間th

0

1

2

3

油箱剩余油量QL

100

94

88

82

①根據(jù)上表的數(shù)據(jù),請你寫出Qt的關(guān)系式;

②汽車行駛5h后,油箱中的剩余油量是多少?

③該品牌汽車的油箱加滿50L,若以100km/h的速度勻速行駛,該車最多能行駛多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).

(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點M,點N在坐標(biāo)軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標(biāo).
(3)在拋物線上是否存在點P,使SPBD=6?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(1,5)和(4,0),點Cy軸上的一個動點,且A、B、C三點不再同一條直線上,當(dāng)ABC的周長最小時,點C的坐標(biāo)是( )

A. (0,1) B. (0,2) C. (0,3) D. (0,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,在五邊形ABCDE中,BCD=EDC=90°,BC=ED,AC=AD

(1)求證:ABC≌△AED;

(2)當(dāng)B=140°時,求BAE的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥CD,直線EF分別交AB,CD于點E,F,EP平分∠BEF,FP平分∠DFE.試說明:△PEF是直角三角形.

查看答案和解析>>

同步練習(xí)冊答案