【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m,水面下降2m,水面寬_____m.

【答案】4

【解析】

根據(jù)已知得出直角坐標(biāo)系,進而求出二次函數(shù)解析式,再通過把y=-2代入拋物線解析式得出水面寬度,即可得出答案.

建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,

拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OAOB可求出為AB的一半2米,拋物線頂點C坐標(biāo)為(0,2),

通過以上條件可設(shè)頂點式y=ax2+2,其中a可通過代入A點坐標(biāo)(﹣2,0),

到拋物線解析式得出:a=﹣0.5,所以拋物線解析式為y=﹣0.5x2+2,

當(dāng)水面下降2米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:

當(dāng)y=﹣2時,對應(yīng)的拋物線上兩點之間的距離,也就是直線y=﹣2與拋物線相交的兩點之間的距離,

可以通過把y=﹣2代入拋物線解析式得出:

﹣2=﹣0.5x2+2,

解得:x=±2,所以水面寬度增加到4米,

故答案為:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的頂點在坐標(biāo)原點,正方形的邊在同一直線上, 在同一直線上,且,邊和邊所在直線的解析式分別為: ,則點的坐標(biāo)是(

A.(6,-1)B.(7,-1)C.(7,-2)D.(6,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016雙十一期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務(wù);若單獨租用乙種車輛,完成任務(wù)的天數(shù)是單獨租用甲種車輛完成任務(wù)天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨完成任務(wù)分別需要多少天?

(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

①; ②; ……

根據(jù)上述規(guī)律解決下列問題:

1)完成第四個等式: ;

2)猜想第個等式(用含的式子表示),并證明其正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

1)計算判斷:(計算并判斷大小,填寫符號:“>”“<”“=”

①當(dāng),時,_____;

②當(dāng),時,_____;

③當(dāng),時,______;

④當(dāng),時,______;

⑤當(dāng),時,______;

⑥當(dāng),時,_______;

2)歸納猜想:猜想并寫出關(guān)于,是常數(shù),且,)之間的數(shù)量關(guān)系;

3)探究證明:請補全以下證明過程:

證明:根據(jù)一個實數(shù)的平方是非負數(shù),可得

,

,,

4)實踐應(yīng)用:要制作面積為的長方形(或正方形)框架,直接利用探究得出的結(jié)論,求出框架周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,C,為半徑是6的⊙O上兩點,點B的中點,以線段BA,BC為鄰邊作菱形ABCD,使點D落在⊙O內(nèi)(不含圓周上),則下列結(jié)論:①直線BD必過圓心O;②菱形ABCD的邊長a的取值范圍是0<a<10;③若點D與圓心O重合,則∠ABC=120°;④若DO=2,則菱形ABCD的邊長為.其中正確的是( 。

A. ①③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富綜合實踐活動,開設(shè)了四個實驗室如下:A.物理;B.化學(xué);C.信息;D.生物.為了解學(xué)生最喜歡哪個實驗室,隨機抽取了部分學(xué)生進行調(diào)查,每位被調(diào)查的學(xué)生都選擇了一個自己最喜歡的實驗室,調(diào)查后將調(diào)查結(jié)果繪制成了如圖統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題

1)求這次被調(diào)查的學(xué)生人數(shù).

2)請將條形統(tǒng)計圖補充完整.

3)求出扇形統(tǒng)計圖中B對應(yīng)的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中,線段AMBC邊上的中線.動點D在直線AM上時,以CD為一邊在CD的下方作等邊CDE,連結(jié)BE

(1)求∠CAM的度數(shù);

(2)若點D在線段AM上時,求證:ADCBEC

(3)當(dāng)動D直線AM上時,設(shè)直線BE與直線AM的交點為O,試判斷AOB是否為定值?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案