在如圖所示的平面直角坐標系中,直線AB:y=k1x+b1與直線AD:y=k2x+b2相交于點A(1,3),且點B坐標為(0,2),直線AB交x軸負半軸于點C,直線AD交x軸正半軸于點D.
(1)求直線AB的函數(shù)解析式;
(2)根據(jù)圖象直接回答,不等式k1x+b1>k2x+b2的解集;
(3)若點M為x軸一動點,當點M在什么位置時,使AM+BM的值最?求出此時點M的坐標.
解(1)∵直線AB:y=k1x+b1過點(1,3),(0,2),
k1+b1=3
b1=2
,
∴解得:k1=1,b1=2,…(2分)
∴直線AB解析式為:y=x+2;…(3分)

(2)由圖得:不等式k1x+b1>k2x+b2的解集為:x>1;…(6分)

(3)點A關(guān)于x軸的對稱點為A′(1,-3).
連接A′B,交x軸于點M,此時AM+BM的值最小.
設(shè)直線A′B解析式為:y=kx+b,
k+b=-3
b=2
,
解得:k=-5,b=2,…(8分)
直線A′B解析式為:y=-5x+2,
當y=0,x=
2
5
,
∴點M(
2
5
,0).…(10分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一次函數(shù)y=kx+b與y軸交于點(0,2),且過點(3,5).
求:①一次函數(shù)的表達式;②直線與兩坐標軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形OABC是一張放在平面直角坐標系中的矩形紙片,點A在x軸上,點C在y軸上,且線段OA、OC(OA>OC)是方程x2-18x+80=0的兩根,將邊BC折疊,使點B落在邊OA上的點D處.
(1)求線段OA、OC的長;
(2)求直線CE與x軸交點P的坐標及折痕CE的長;
(3)是否存在過點D的直線l,使直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一次函數(shù)y=kx+b的圖象經(jīng)過點A、B,則它的解析式是( 。
A.y=2x+3B.y=-2x+3C.y=-
3
2
x+3
D.y=-
2
3
x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩直線l1,l2的位置關(guān)系如圖所示,請求出以點A的坐標為解的二元一次方程組.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,當三角形直角頂點P坐標為(3,3)時,設(shè)一直角邊與x軸的正半軸交于點A,另一直角邊與y軸交于點B,在三角板繞點P旋轉(zhuǎn)的過程中,使得△POA為等腰三角形.請寫出所有滿足條件的點B的坐標______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y=-
1
2
x+4分別與x軸,y軸交于點C、D,以O(shè)D為直徑作⊙A交CD于F,F(xiàn)A的延長線交⊙A于E,交x軸于B.
(1)求點A的坐標;
(2)求△ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某超市進了一批成本為6元/個 的文具.調(diào)查后發(fā)現(xiàn):這種文具每周的銷售量y(個)與銷售價x(元/個)之間的關(guān)系滿足一次函數(shù)關(guān)系,如表所示
銷售價x(元/個)89.51114
銷售量y(個)220205190160
(1)求y與x的函數(shù)關(guān)系式(不必寫出定義域);
(2)已知該超市這種文具每周的進貨量不少于60個,若該超市某周銷售這種文具(不考慮其他原因)的利潤為800元,求該周每個文具的銷售量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形OABC中,點A、C的坐標分別是(a,0),(0,
3
),點D是線段BC上的動點(與B、C不重合),過點D作直線l:y=-
3
x+b
交線段OA于點E.
(1)直接寫出矩形OABC的面積(用含a的代數(shù)式表示);
(2)已知a=3,當直線l將矩形OABC分成周長相等的兩部分時
①求b的值;
②梯形ABDE的內(nèi)部有一點P,當⊙P與AB、AE、ED都相切時,求⊙P的半徑.
(3)已知a=5,若矩形OABC關(guān)于直線DE的對稱圖形為四邊形O1A1B1C1,設(shè)CD=k,當k滿足什么條件時,使矩形OABC和四邊形O1A1B1C1的重疊部分的面積為定值,并求出該定值.

查看答案和解析>>

同步練習(xí)冊答案