【題目】州政府投資3個(gè)億擬建的恩施民族高中,它位于北緯31°,教學(xué)樓窗戶朝南,窗戶高度為h米,此地一年的冬至這一天的正午時(shí)刻太陽光與地面的夾角最小為α,夏至這一天的正午時(shí)刻太陽光與地面的夾角最大為β.若你是一名設(shè)計(jì)師,請你為教學(xué)樓的窗戶設(shè)計(jì)一個(gè)直角形遮陽蓬BCD,要求它既能最大限度地遮擋夏天炎熱的陽光,又能最大限度地使冬天溫暖的陽光射入室內(nèi)(如圖).根據(jù)測量測得∠α=32.6°,∠β=82.5°,h=2.2米.請你求出直角形遮陽蓬BCD中BC與CD的長各是多少?(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin32.6°=0.54,sin82.5°=0.99,tan32.6°=0.64,tan82.5°=7.60)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料,回答問題:
解方程x4-5x2+4=0,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè)x2=y,那么x4=y2,于是原方程可變?yōu)?/span>y2-5y+4=0 ①,解得y1=1,y2=4.
當(dāng)y=1時(shí),x2=1,∴x=±1;當(dāng)y=4時(shí),x2=4,∴x=±2;
∴原方程有四個(gè)根:x1=1,x2=-1,x3=2,x4=-2.
(1)在由原方程得到方程①的過程中,利用 法(把未知數(shù)x換為 y)達(dá)到降次的目的.
(2)解方程:(x2+3x)2+5(x2+3x)-6=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,CD⊥AB,垂足為D,AC=20,BC=15.動(dòng)點(diǎn)P從A開始,以每秒2個(gè)單位長的速度沿AB方向向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)P分別作AC、BC邊的垂線,垂足為E、F.
(1)求AB與CD的長;
(2)當(dāng)矩形PECF的面積最大時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間t;
(3)以點(diǎn)C為圓心,r為半徑畫圓,若圓C與斜邊AB有且只有一個(gè)公共點(diǎn)時(shí),求r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+4x與x軸交于點(diǎn)O、A,把拋物線在x軸及其上方的部分記為C1,將C1以y鈾為對稱軸作軸對稱得到C2,C2與x軸交于點(diǎn)B,若直線y=x+m與C1,C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是( )
A. 0<m< B. <m<
C. 0<m< D. m<或m<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)C是線段OA上的一個(gè)動(dòng)點(diǎn)(不運(yùn)動(dòng)至O,A兩點(diǎn)),過點(diǎn)C作CD⊥x軸,垂足為D,以CD為邊在右作正方形CDEF,連接AF并延長交x軸的正半軸于點(diǎn)B,連接OF,設(shè)OD=t.
(1)求的值;
(2)用含t的代數(shù)式表示△OAB的面積S;
(3)是否存在點(diǎn)B,使以B,E,F(xiàn)為頂點(diǎn)的三角形與△OEF相似?若存在,請求出所有滿足要求的B點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商場銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下.若每千克漲價(jià)1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)每千克水果漲價(jià)多少元時(shí),商場每天獲得的利潤最大?獲得的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AB垂直弦CD于點(diǎn)E,連接AD、BC、OC,且OC=5.
(1)若sin∠BCD=,求CD的長;
(2)若∠OCD=4∠BCD,求扇形OAC(陰影部分)的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A(,1)、B(2,0)、O(0,0),反比例函數(shù)y=圖象經(jīng)過點(diǎn)A.
(1)求k的值;
(2)將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°,得到△COD,其中點(diǎn)A與點(diǎn)C對應(yīng),試判斷點(diǎn)D是否在該反比例函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A為函數(shù) 圖象上一點(diǎn),連結(jié)OA,交函數(shù) 的圖象于點(diǎn)B,點(diǎn)C是x軸上一點(diǎn),且AO=AC,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com