數(shù)學(xué)家帕普斯借助函數(shù)給出一種“三等分銳角”的方法,步驟如下:
①將銳角∠AOB置于平面直角坐標(biāo)系中,其中以點O為坐標(biāo)原點,邊OB在x軸上;
②邊OA與函數(shù)y=
1
x
(x>0)
的圖象交于點P,以P為圓心,2倍OP的長為半徑作弧,在∠AOB內(nèi)部交函數(shù)y=
1
x
(x>0)
的圖象于點R;
③過點P作x軸的平行線,過點R作y軸的平行線,兩直線相交于點M,連結(jié)OM.則∠MOB=
1
3
∠AOB.
請根據(jù)以上材料,完成下列問題:

(1)應(yīng)用上述方法在圖1中畫出∠AOB的三等分線OM;
(2)設(shè)P(a,
1
a
),R(b,
1
b
)
,求直線OM對應(yīng)的函數(shù)表達式(用含a,b的代數(shù)式表示);
(3)證明:∠MOB=
1
3
∠AOB;
(4)應(yīng)用上述方法,請嘗試將圖2所示的鈍角三等分.
分析:(1)根據(jù)題意所述步驟即可作出∠AOB的三等分線OM;
(2)根據(jù)點P、點R的坐標(biāo)可得出點M的坐標(biāo),繼而可得出直線OM的解析式.
(3)過點P作y軸的平行線,過點R作x軸的平行線,兩線相交于點Q,根據(jù)點Q的坐標(biāo)可確定點Q在直線OM上,則可得四邊形PQRM是矩形,由∠PON=∠PNO=2∠PMN=2∠MOB,可得出結(jié)論;
(4)方法不止一種,可以按照題意敘述的方法進行作圖.
解答:(1)解:如圖所示:


(2)解:由圖1可得點M的坐標(biāo)為(b,
1
a
),
故可得直線OM的表達式為:y=
1
ab
x.

(3)證明:過點P作y軸的平行線,過點R作x軸的平行線,兩線相交于點Q,

則點Q的坐標(biāo)為(a,
1
b
),
∴點Q在OM上,
∴四邊形PQRM是矩形,
∴PN=
1
2
PR=OP,
∴MQ=PR,
∴PN=MN,
∴∠MOB=∠PMN=
1
2
∠PNO=
1
2
∠AOM,
∴∠MOB=
1
3
∠AOB.

(4)解:邊OA與函數(shù)y=-
1
x
(x<0)的圖象交于點P,以點P為圓心,2OP的長為半徑作弧,
在第四象限交函數(shù)y=-
1
x
(x>0)的圖象于點R,
過點P作x軸的平行線,過點R作y軸的平行線,兩直線相交于點M,連接OM,則∠MOB=
1
3
∠AOB..
點評:本題考查了反比例函數(shù)的綜合題,涉及了代行系數(shù)法求直線解析式的知識,解答本題的關(guān)鍵是仔細讀題,明白題目給出的信息,在解題時注意活學(xué)活用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

“三等分角”是數(shù)學(xué)史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設(shè)P(a,
1
a
)、R(b,
1
b
),求直線OM對應(yīng)的函數(shù)表達式(用含a,b的代數(shù)式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明精英家教網(wǎng)∠MOB=
1
3
∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個鈍角(用文字簡要說明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)“三等分角”是數(shù)學(xué)史上一個著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)
精英家教網(wǎng)
(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=
1
x
的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=
1
3
∠AOB.要明白帕普斯的方法,請研究以下問題:
①設(shè)P(a,
1
a
)、R(b,
1
b
),求直線OM對應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=
1
3
∠AOB.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006-2007學(xué)年湖北省仙桃市九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

“三等分角”是數(shù)學(xué)史上一個著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點P,以P為圓心、以2OP為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
(1)設(shè)P(a,)、R(b,),求直線OM對應(yīng)的函數(shù)表達式(用含a,b的代數(shù)式表示);
(2)分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個鈍角(用文字簡要說明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省無錫市育才中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(1)“三等分角”是數(shù)學(xué)史上一個著名問題,但數(shù)學(xué)家已經(jīng)證明,僅用尺規(guī)不可能“三等分任意角”.但對于特定度數(shù)的已知角,如90°角、45°角等,是可以用尺規(guī)進行三等分的.如圖a,∠AOB=90°,我們在邊OB上取一點C,用尺規(guī)以O(shè)C為一邊向∠AOB內(nèi)部作等邊△OCD,作射線OD,再用尺規(guī)作出∠DOB的角平分線OE,則射線OD、OE將∠AOB三等分.仔細體會一下其中的道理,然后用尺規(guī)把圖b中的∠MON三等分(已知∠MON=45°).(不需寫作法,但需保留作圖痕跡,允許適當(dāng)添加文字的說明)

(2)數(shù)學(xué)家帕普斯借助函數(shù)給出了一種“三等分銳角”的方法(如圖c):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)y=的圖象交于點P,以P為圓心、2OP長為半徑作弧交圖象于點R.分別過點P和R作x軸和y軸的平行線,兩直線相交于點M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:
①設(shè)P(a,)、R(b,),求直線OM對應(yīng)的函數(shù)關(guān)系式(用含a、b的代數(shù)式表示).
②分別過點P和R作y軸和x軸的平行線,兩直線相交于點Q.請說明Q點在直線OM上,并據(jù)此證明∠MOB=∠AOB.

查看答案和解析>>

同步練習(xí)冊答案