【題目】如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A, .則下列結(jié)論中不一定正確的是(
A.BA⊥DA
B.OC∥AE
C.∠COE=2∠CAE
D.OD⊥AC

【答案】D
【解析】解:∵AB是⊙O的直徑,AD切⊙O于點(diǎn)A, ∴BA⊥DA,故A正確;

∴∠EAC=∠CAB,
∵OA=OC,
∴∠CAB=∠ACO,
∴∠EAC=∠ACO,
∴OC∥AE,故B正確;
∵∠COE是 所對的圓心角,∠CAE是 所對的圓周角,
∴∠COE=2∠CAE,故C正確;
只有當(dāng) = 時OD⊥AC,故本選項(xiàng)錯誤.
故選D.

【考點(diǎn)精析】掌握圓心角、弧、弦的關(guān)系和圓周角定理是解答本題的根本,需要知道在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明:

已知:如圖,AB∥DE,求證:∠D+∠BCD﹣∠B=180°,

證明:過點(diǎn)CCF∥AB.

∵AB∥CF(已知),

∴∠B=      ).

∵AB∥DE,CF∥AB( 已知 ),

∴CF∥DE (   

∴∠2+   =180° (   

∵∠2=∠BCD﹣∠1,

∴∠D+∠BCD﹣∠B=180° (   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣2(1﹣m)x+m2=0的兩實(shí)數(shù)根為x1 , x2 , 則y=x1+x2+2x1x2的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的中垂線交于點(diǎn)延長線于點(diǎn).若,,則四邊形的面積是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直線AB和△DEF,作△DEF關(guān)于直線AB的對稱圖形,將作圖步驟補(bǔ)充完整:

1)分別過點(diǎn)D,E,F作直線AB的垂線,垂足分別是點(diǎn)______________;

2)分別延長DM,EP,FN至點(diǎn)____________,使______=______,______=______,______=______;

3)順次連結(jié)______,______,______,就得到△DEF關(guān)于直線AB的對稱圖形△GHL.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與運(yùn)用觀察發(fā)現(xiàn):解方程組 ,將(1)整體代入(2),得2×4+y10,解得y2,把y2代入(1),得x6,所以 ;這種解法稱為“整體代入法”,你若留心觀察,有很多方程組可采用此方法解答.已知關(guān)于a、b的方程組:

1)求a+b的值;

2)若關(guān)于x的不等式組恰好有1個整數(shù)解,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,以點(diǎn)A為圓心,OA的長為半徑作 于點(diǎn)C,若OA=2,則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇準(zhǔn)備完成題目:化簡:,發(fā)現(xiàn)系數(shù)印刷不清楚.

(1)他把猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);

(2)他媽媽說:你猜錯了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).通過計(jì)算說明原題中是幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ADC=∠EFC,∠3=∠C,證明∠1=∠2的過程如下,請?zhí)钌蠈?yīng)的理由.

解:∵∠ADC=∠EFC(已知),

ADEF___________________________________).

∴∠1=∠4__________________________________).

又∵∠3=∠C(已知),

ACDG__________________________________).

∴∠2=∠4_________________________________).

∴∠1=∠2________________________).

查看答案和解析>>

同步練習(xí)冊答案