【題目】已知關(guān)于x的方程x2﹣2(a+b)x+c2+2ab=0有兩個(gè)相等的實(shí)數(shù)根,其中a、b、c為△ABC的三邊長(zhǎng).
(1)試判斷△ABC的形狀,并說明理由;
(2)若CD是AB邊上的高,AC=2,AD=1,求BD的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=﹣x2+2mx﹣m2+m.
(1)求拋物線的對(duì)稱軸(用含m的式子表示);
(2)如果該拋物線的頂點(diǎn)在直線y=2x﹣4上,求m的值.
(3)點(diǎn)A的坐標(biāo)為(﹣2,﹣8),點(diǎn)A關(guān)于點(diǎn)(0,﹣9)的對(duì)稱點(diǎn)為B點(diǎn).
①寫出點(diǎn)B坐標(biāo).
②若該拋物線與線段AB有公共點(diǎn),結(jié)合函數(shù)圖象,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,對(duì)角線,相交于點(diǎn),平分交于點(diǎn),,則的度數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是BD的中點(diǎn),CE⊥AB,垂足為E,BD交CE于點(diǎn)F.
【1】求證:CF=BF;
【2】若AD=2,⊙O的半徑為3,求BC的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對(duì)角線AC、BD相交于點(diǎn)E。且AC⊥BD。(1)求證:CD=BC·AD;(2)點(diǎn)F是邊BC上一點(diǎn),連接AF,與BD相交于點(diǎn)G,如果∠BAF=∠DBF,求證:。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某淘寶網(wǎng)店銷售臺(tái)燈,成本為每個(gè)30元,銷售大數(shù)據(jù)分析表明,當(dāng)每個(gè)臺(tái)燈售價(jià)為40元時(shí),平均每月售出600個(gè),若售價(jià)每上漲1元,其月銷量就減少20個(gè),若售價(jià)每下降1元,其月銷量就增加200個(gè).
(1)若售價(jià)上漲元,每月能售出___________個(gè)臺(tái)燈.
(2)為迎接“雙十一”,該網(wǎng)店決定降價(jià)銷售,在庫存為1210個(gè)臺(tái)燈的情況下,若預(yù)計(jì)月獲利恰好為8400元,求每個(gè)臺(tái)燈的售價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D為矩形的4個(gè)頂點(diǎn),AB=16cm,BC=6cm,動(dòng)點(diǎn)P、Q分別以3cm/s、2cm/s的速度從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C向點(diǎn)D移動(dòng).
(1)若點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)B停止,點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),問經(jīng)過2s時(shí)P、Q兩點(diǎn)之間的距離是多少cm?
(2)若點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)B停止,點(diǎn)Q隨點(diǎn)P的停止而停止移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),問經(jīng)過多長(zhǎng)時(shí)間P、Q兩點(diǎn)之間的距離是10cm?
(3)若點(diǎn)P沿著AB→BC→CD移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C移動(dòng)到點(diǎn)D停止時(shí),點(diǎn)P隨點(diǎn)Q的停止而停止移動(dòng),試探求經(jīng)過多長(zhǎng)時(shí)間△PBQ的面積為12cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)給以下結(jié)論:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m為實(shí)數(shù));⑤4ac﹣b2<0.其中錯(cuò)誤結(jié)論的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像與直線交于點(diǎn)、點(diǎn).
(1)求的表達(dá)式和的值;
(2)當(dāng)時(shí),求自變量的取值范圍;
(3)將直線沿軸上下平移,當(dāng)平移后的直線與拋物線只有一個(gè)公共點(diǎn)時(shí),求平移后的直線表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com