【題目】如圖,是的直徑,點(diǎn)為的中點(diǎn),為的弦,且,垂足為,連接交于點(diǎn),連接,,.
(1)求證:;
(2)若,求的長.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)點(diǎn)為的中點(diǎn)和垂徑定理可證CD=BF,再利用即可證得結(jié)論;
(2)解法一:連接,設(shè)的半徑為,由列出關(guān)于的方程就能求解;
解法二:如圖,作輔助線,構(gòu)建角平分線和全等三角形,證明,得,再證明,得,進(jìn)而可得和的長,易證,列比例式可求得的長,也就是的長;
解法三:連接,根據(jù)垂徑定理和三角形的中位線定理可得,再證明,然后利用勾股定理即可求出結(jié)果.
證明:(1)∵是的中點(diǎn),∴,
∵是的直徑,且,∴,
∴,∴,
在和中,
∵,
∴;
(2)解法一:如圖,連接,設(shè)的半徑為,
中,,即,
中,,即,
∵,∴,∴,
∴,
即,
解得:(舍)或3,
∴,
∴;
解法二:如圖,過作交AD延長線于點(diǎn),連接、,
∵,∴,
∵,∴,
∵,∴,
∴,
∵,,
∴,
∴,∴,∴,
∵是的直徑,∴,∴,
∵,∴,
∴,
∴,
∴.
解法三:如圖,連接,交于,
∵是的中點(diǎn),∴,∴,
∵,∴,
∵,,,
∴,
∴,,
∴,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)畫出△ABC關(guān)于點(diǎn)B成中心對稱的圖形△A1BC1;
(2)以原點(diǎn)O為位似中心,相似比為1∶2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.
①線段DG與BE之間的數(shù)量關(guān)系是 ;
②直線DG與直線BE之間的位置關(guān)系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時(shí),上述結(jié)論是否成立,并說明理由.
(3)應(yīng)用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=(x+m)2+k的圖象,其頂點(diǎn)坐標(biāo)為M(1,﹣4)
(1)求出圖象與x軸的交點(diǎn)A、B的坐標(biāo);
(2)在二次函數(shù)的圖象上是否存在點(diǎn)P,使S△PAB=S△MAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2x+3.
(1)求函數(shù)圖象的頂點(diǎn)坐標(biāo),并畫出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,直接寫出:
①當(dāng)函數(shù)值y>0時(shí),自變量x的取值范圍;
②當(dāng)2<x<2時(shí),函數(shù)值y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線交正半軸于點(diǎn),將拋物線先向右平移3個(gè)單位,再向上平移3個(gè)單位得到拋物線,與交于點(diǎn),直線交于點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)是拋物線上間的一點(diǎn),作軸交拋物線于點(diǎn),連接,.設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)為何值時(shí),使的面積最大,并求出最大值;
(3)如圖2,將直線向下平移,交拋物線于點(diǎn),,交拋物線于點(diǎn),,則的值是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE、BE是△ABC的兩個(gè)內(nèi)角的平分線,過點(diǎn)A作AD⊥AE.交BE的延長線于點(diǎn)D.若AD=AB,BE:ED=1:2,則cos∠ABC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.任意給定一個(gè)正方形,一定存在另一個(gè)正方形,它的周長和面積分別是已知正方形周長和面積的一半
B.任意給定一個(gè)正方形,一定存在另一個(gè)正方形,它的周長和面積分別是已知正方形周長和面積的2倍
C.任意給定一個(gè)矩形,一定存在另一個(gè)矩形,它的周長和面積分別是已知矩形周長和面積的一半
D.任意給定一個(gè)矩形,一定存在另一個(gè)矩形,它的周長和面積分別是已知矩形周長和面積的2倍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,BC是⊙O的直徑,點(diǎn)A在⊙O上,AD⊥BC,垂足為D,,BE分別交AD、AC于點(diǎn)F、G.
(1)判斷△FAG的形狀,并說明理由;
(2)如圖2,若點(diǎn)E和點(diǎn)A在BC的兩側(cè),BE、AC的延長線交于點(diǎn)G,AD的延長線交BE于點(diǎn)F,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由;
(3)在(2)的條件下,若BG=26,BD﹣DF=7,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com