精英家教網 > 小學數學 > 題目詳情

如圖,求陰影部分的面積.(單位:厘米)

解:3.14×(10÷2)2÷2-(10×10÷2-×3.14×102),
=3.14×25÷2-(50-39.25),
=39.25-10.75,
=28.5(平方厘米),
答:陰影部分的面積是28.5平方厘米.
分析:如圖所示,陰影部分的面積=半圓的面積-空白①的面積,而空白①的面積=三角形的面積-扇形ABC的面積,據此代入數據即可求解.

點評:解答此題的關鍵是弄清楚:陰影部分的面積可以由哪些圖形的面積和或差求出.
練習冊系列答案
相關習題

科目:小學數學 來源: 題型:

看圖計算.

(1)如圖1,已知正方形的面積為64平方厘米,求陰影部分的面積.
(2)如圖2,在直角梯形ABCD中,AB=8,BC=14厘米,AD=10厘米,△DCF的面積是梯形ABCD面積的
1
4
,△ADE的面積是梯形ABCD面積的
3
8
,求陰影部分面積.
(3)如圖3,正方形ABCD的邊長是6厘米,E、F分別是AB、BC的中點,求陰影部分的面積?
(4)如圖4,有一個底面周長為6.28厘米的圓柱體,被斜著截去一段,現(xiàn)在的體積是多少?

查看答案和解析>>

科目:小學數學 來源: 題型:

(2010?沁水縣模擬)求陰影部分的面積和立體圖形的體積
(1)如圖,圓的周長是62.8厘米
(2)圖中圓錐的底面直徑是10厘米,高是12厘米.

查看答案和解析>>

科目:小學數學 來源: 題型:

如圖,正方體的邊長是10厘米,E、F、G、H分別是正方體底面各邊的中點,這四點依次與正方體的頂點K連接,求陰影部分的體積(保留兩位小數).

查看答案和解析>>

科目:小學數學 來源: 題型:解答題

看圖計算.

(1)如圖1,已知正方形的面積為64平方厘米,求陰影部分的面積.
(2)如圖2,在直角梯形ABCD中,AB=8,BC=14厘米,AD=10厘米,△DCF的面積是梯形ABCD面積的數學公式,△ADE的面積是梯形ABCD面積的數學公式,求陰影部分面積.
(3)如圖3,正方形ABCD的邊長是6厘米,E、F分別是AB、BC的中點,求陰影部分的面積?
(4)如圖4,有一個底面周長為6.28厘米的圓柱體,被斜著截去一段,現(xiàn)在的體積是多少?

查看答案和解析>>

科目:小學數學 來源: 題型:解答題

求陰影部分的面積和立體圖形的體積
(1)如圖,圓的周長是62.8厘米
(2)圖中圓錐的底面直徑是10厘米,高是12厘米.

查看答案和解析>>

同步練習冊答案