【題目】如圖,一樓房AB后有一假山,其斜坡CD坡比為1: ,山坡坡面上點(diǎn)E處有一休息亭,測(cè)得假山坡腳C與樓房水平距離BC=6米,與亭子距離CE=20米,小麗從樓房頂測(cè)得點(diǎn)E的俯角為45°.

(1)求點(diǎn)E距水平面BC的高度;
(2)求樓房AB的高.(結(jié)果精確到0.1米,參考數(shù)據(jù) ≈1.414, ≈1.732)

【答案】
(1)

解:過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F.

在Rt△CEF中,CE=20, ,

∴EF2+( EF)2=202,

∵EF>0,

∴EF=10.

答:點(diǎn)E距水平面BC的高度為10米.


(2)

解:過(guò)點(diǎn)E作EH⊥AB于點(diǎn)H.

則HE=BF,BH=EF.

在Rt△AHE中,∠HAE=45°,

∴AH=HE,

由(1)得CF= EF=10 (米)

又∵BC=6米,

∴HE=6+10 米,

∴AB=AH+BH=6+10 +10=16+10 ≈33.3(米).

答:樓房AB的高約是33.3米.


【解析】(1)過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F.在Rt△CEF中,求出CF= EF,然后根據(jù)勾股定理解答;(2)過(guò)點(diǎn)E作EH⊥AB于點(diǎn)H.在Rt△AHE中,∠HAE=45°,結(jié)合(1)中結(jié)論得到CF的值,再根據(jù)AB=AH+BH,求出AB的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)A,B,如下圖.電信部門(mén)要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫(xiě)出畫(huà)法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次暑假旅游中,小亮在仙島湖的游船上(A處),測(cè)得湖西岸的山峰太婆尖(C處)和湖東岸的山峰老君嶺(D處)的仰角都是45°.游船向東航行100米后(B處),測(cè)得太婆尖,老君嶺的仰角分別為30°,60°.試問(wèn)太婆尖、老君嶺的高度為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長(zhǎng)線(xiàn)上一點(diǎn),N是DCP的平分線(xiàn)上一點(diǎn).若AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面請(qǐng)你完成余下的證明過(guò)程)

(2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線(xiàn)上一點(diǎn),則當(dāng)AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說(shuō)明理由.

(3)若將(1)中的正方形ABCD改為邊形ABCD……X,請(qǐng)你作出猜想:當(dāng)AMN= °時(shí),結(jié)論AM=MN仍然成立.(直接寫(xiě)出答案,不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABD和△AEC中,AD=ABAE=AC,DAB=EAC=60°,CDBE相交于點(diǎn)P

(1)用全等三角形判定方法證明:BEDC

(2)求∠BPC的度數(shù);

(3)在(2)的基礎(chǔ)上,經(jīng)過(guò)深入探究后發(fā)現(xiàn):射線(xiàn)AP平分∠BPC,請(qǐng)判斷你的發(fā)現(xiàn)是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大潤(rùn)發(fā)超市進(jìn)了一批成本為8元/個(gè)的文具盒.調(diào)查發(fā)現(xiàn):這種文具盒每個(gè)星期的銷(xiāo)售量y(個(gè))與它的定價(jià)x(元/個(gè))的關(guān)系如圖所示:

(1)求這種文具盒每個(gè)星期的銷(xiāo)售量y(個(gè))與它的定價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式(不必寫(xiě)出自變量x的取值范圍);
(2)每個(gè)文具盒的定價(jià)是多少元時(shí),超市每星期銷(xiāo)售這種文具盒(不考慮其他因素)可獲得的利潤(rùn)為1200元?
(3)若該超市每星期銷(xiāo)售這種文具盒的銷(xiāo)售量不少于115個(gè),且單件利潤(rùn)不低于4元(x為整數(shù)),當(dāng)每個(gè)文具盒定價(jià)多少元時(shí),超市每星期利潤(rùn)最高?最高利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC與△DCE都是等邊三角形,BC,E三點(diǎn)在同一條直線(xiàn)上,若AB=6,BAD=150°,則DE的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線(xiàn),DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1在平面直角坐標(biāo)系中.等腰Rt△OAB的斜邊OA在x軸上.P為線(xiàn)段OB上﹣動(dòng)點(diǎn)(不與O,B重合).過(guò)P點(diǎn)向x軸作垂線(xiàn).垂足為C.以PC為邊在PC的右側(cè)作正方形PCDM.OP= t、OA=3.設(shè)過(guò)O,M兩點(diǎn)的拋物線(xiàn)為y=ax2+bx.其頂點(diǎn)N(m,n)

(1)寫(xiě)出t的取值范圍 , 寫(xiě)出M的坐標(biāo):();
(2)用含a,t的代數(shù)式表示b;
(3)當(dāng)拋物線(xiàn)開(kāi)向下,且點(diǎn)M恰好運(yùn)動(dòng)到AB邊上時(shí)(如圖2)
①求t的值;
②若N在△OAB的內(nèi)部及邊上,試求a及m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案