1. 作文動筆之前一般都要先打腹稿。在確立中心上、運用材料上、篇章結構上,充分醞釀。
8. 最后應注意復查全文。看內(nèi)容要點有無遺漏,標點、格式、大小寫是否規(guī)范,是否有語病等。
總之,要心有全局。英文寫作如果結構意識良好,應試寫作就簡化成為一個填空的過程了,適當?shù)靥钊胗^點、素材,文章就自然而然立起來了。臨考在即,同學們要牢記英語寫作的基本要領,特編順口溜如下:細審題,巧構思,列要點,防遺漏。寫日記,同漢語;書信、通知格式要牢記?辞鍒D表細梳理,寫人記事按順序;完稿后查遺漏,整潔干凈莫忘記。
英語作文寫作“四步走”
由于時間限制,高考時一般在15分鐘左右必須完成英語作文。高考的英語作文步驟如下:
7. 注意保持卷面整潔,書寫工整清楚。書寫的好壞會直接影響閱卷老師的情緒。
6. 注意文章的長度。看具體內(nèi)容而定,如果內(nèi)容多應多用復雜句式,如果內(nèi)容不多,為了達到詞的限數(shù)應多用簡單句式,并適當增補合理內(nèi)容。
5. 遇到一時想不起的詞語,需變通?梢杂猛x近義詞代替,也可以用否定詞加反義詞來表達,亦可變換句式。不可鉆牛角尖,更不能生造詞語,漢化表達。
4. 要刻意把好語言關。要用自己最熟悉的句型結構和詞語,力求文理通順,語言準確。沒有把握的詞句不要寫,確有把握的的可以錦上添花。
3. 勿要直譯,需意譯。尤其對看圖情景作文要構建完整故事結構,不可逐句羅列了事。
2. 列題綱使要點條理化,有序化,統(tǒng)籌安排布局。
1. 首先要認真審題。讀懂題目所給信息,初步確定要點內(nèi)容,并可用序號標出以免遺忘。
1.3.1利用導數(shù)判斷函數(shù)的單調性
學習目標: 1.正確理解利用導數(shù)判斷函數(shù)的單調性的原理; 2.掌握利用導數(shù)判斷函數(shù)單調性的方法 學習重點難點: 利用導數(shù)判斷函數(shù)單調性. 自主學習 一、知識再現(xiàn): 1. 函數(shù)的單調性. 對于任意的兩個數(shù)x1,x2∈I,且當x1<x2時, 都有f(x1)<f(x2),那么函數(shù)f(x)就是區(qū)間I上的增函數(shù). 對于任意的兩個 數(shù)x1,x2∈I,且當x1<x2時,都有f(x1)>f(x2),那么函數(shù)f(x)就是區(qū)間 I上的減函數(shù). 2. 導數(shù)的概念及其四則運算 二、新課探究: 1、定義:一般地,設函數(shù)y=f(x) 在某個區(qū)間內(nèi)有導數(shù),如果在 這個區(qū)間內(nèi)0,那么函數(shù)y=f(x) 在為這個區(qū)間內(nèi)的增函數(shù);如果在 這個區(qū)間內(nèi)0,那么函數(shù)y=f(x) 在為這個區(qū)間內(nèi)的減函數(shù) 2、用導數(shù)求函數(shù)單調區(qū)間的步驟: ①求函數(shù)f(x)的導數(shù)f′(x). ②令f′(x) 0解不等式,得x的范圍就是遞增區(qū)間. ③令f′(x)0解不等式,得x的范圍,就是遞減區(qū)間. 3、例題解析: 例1確定函數(shù)f(x)=x2-2x+4在哪個區(qū)間內(nèi)是增函數(shù),哪個區(qū)間內(nèi)是減函 數(shù). 解:f′(x)=(x2-2x+4)′=2x-2. 令2x-2>0,解得x>1. ∴當x∈(1,+∞)時,f′(x)>0,f(x)是增函數(shù). 令2x-2<0,解得x<1. ∴當x∈(-∞,1)時,f′(x)<0,f(x)是減函數(shù). 例2確定函數(shù)f(x)=2x3-6x2+7在哪個區(qū)間內(nèi)是增函數(shù),哪個區(qū)間內(nèi)是減 函數(shù). 解:f′(x)=(2x3-6x2+7)′=6x2-12x 令6x2-12x>0,解得x>2或x<0 ∴當x∈(-∞,0)時,f′(x)>0,f(x)是增函數(shù). 當x∈(2,+∞)時,f′(x)>0,f(x)是增函數(shù). 令6x2-12x<0,解得0<x<2. ∴當x∈(0,2)時,f′(x)<0,f(x)是減函數(shù). 例3證明函數(shù)f(x)=在(0,+∞)上是減函數(shù). 證法一:(用以前學的方法證)任取兩個數(shù)x1,x2∈(0,+∞)設x1<x2. f(x1)-f(x2)= ∵x1>0,x2>0,∴x1x2>0 ∵x1<x2,∴x2-x1>0, ∴>0 ∴f(x1)-f(x2)>0,即f(x1)>f(x2) ∴f(x)= 在(0,+∞)上是減函數(shù). 證法二:(用導數(shù)方法證) ∵f′(x)=( )′=(-1)·x-2=-,x>0, ∴x2>0,∴-<0. ∴f′(x)<0,∴f(x)= 在(0,+∞)上是減函數(shù). 例4求函數(shù)y=x2(1-x)3的單調區(qū)間. 解:y′=[x2(1-x)3]′=2x(1-x)3+x2·3(1-x)2·(-1) =x(1-x)2[2(1-x)-3x]=x(1-x)2·(2-5x) 令x(1-x)2(2-5x)>0,解得0<x<. ∴y=x2(1-x)3的單調增區(qū)間 是(0,) 令x(1-x)2(2-5x)<0,解得x<0或x>且x≠1. ∵為拐點,∴y=x2(1-x)3的單調減區(qū)間是(-∞,0),(,+∞) 例5.求的單調遞增區(qū)間 解:由函數(shù)的定義域可知, 即 又 所以 令,得或 綜上所述,的單調遞增區(qū)間為(0,1) 課堂鞏固: 1.函數(shù)的單調遞增區(qū)間是( ) A B C D 2.已知函數(shù),則它的單調遞減區(qū)間是( ) A. B. C. D.及 3. 函數(shù)的單調遞增區(qū)間是__________________. 4.當 時,在上是減函數(shù). 歸納反思: 合作探究: 1.求函數(shù)的單調區(qū)間 2.已知函數(shù)的圖象過點,且在點 處的切線方程為。 (1)求函數(shù)的解析式;(2)求函數(shù)的單調區(qū)間。 |
教師備課 學習筆記 教師備課 學習筆記 教師備課 學習筆記 教師備課 學習筆記 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com