中.是否存在垂直于軸的直線被以AD為直徑的圓截得的弦長(zhǎng)恒為定值?若存在求出的方程,若不存在.請(qǐng)說明理由. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知不垂直于x軸的動(dòng)直線l交拋物線y2=2mx(m>0)于A、B兩點(diǎn),若A、B兩點(diǎn)滿足∠AQP=∠BQP,其中Q(-4,0),原點(diǎn)O為PQ的中點(diǎn).
①求證:A、P、B三點(diǎn)共線;
②當(dāng)m=2時(shí),是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長(zhǎng)為定值,如果存在,求出l′的方程,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

已知不垂直于x軸的動(dòng)直線l交拋物線y2=2mx(m>0)于A、B兩點(diǎn),若A、B兩點(diǎn)滿足∠AQP=∠BQP,其中Q(-4,0),原點(diǎn)O為PQ的中點(diǎn).
①求證:A、P、B三點(diǎn)共線;
②當(dāng)m=2時(shí),是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長(zhǎng)為定值,如果存在,求出l′的方程,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

已知不垂直于x軸的動(dòng)直線l交拋物線y2=2mx(m>0)于A、B兩點(diǎn),若A、B兩點(diǎn)滿足∠AQP=∠BQP,其中Q(-4,0),原點(diǎn)O為PQ的中點(diǎn).
①求證:A、P、B三點(diǎn)共線;
②當(dāng)m=2時(shí),是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長(zhǎng)為定值,如果存在,求出l′的方程,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

已知不垂直于x軸的動(dòng)直線l交拋物線y2=2mx(m>0)于A、B兩點(diǎn),若A、B兩點(diǎn)滿足∠AQP=∠BQP,其中Q(-4,0),原點(diǎn)O為PQ的中點(diǎn).
①求證:A、P、B三點(diǎn)共線;
②當(dāng)m=2時(shí),是否存在垂直于x軸的直線l′,使得l′被以AP為直徑的圓所截得的弦長(zhǎng)為定值,如果存在,求出l′的方程,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

已知橢圓的中心是坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
2
2
,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為2
2
,過點(diǎn)M(0,-
1
3
)與x軸不垂直的直線l交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

CACD CCBA

9、      10、2:1      11、    12、      13、4

14、a<-1   15、

 

16、

17、解:(I)依題意

                                                            …………2分

      

                                                                    …………4分

         bn=8+8×(n-1)=8n                                   …………5分

(II)                   …………6分

                

 

                                                    …………12分

18、(1)3

(2)底面邊長(zhǎng)為2,高為4是,體積最大,最大體積為16

19、

略解、(1)因?yàn)閒′(x)=3ax2+2x-1,依題意存在(2,+∞)的非空子區(qū)間使3ax2+2x-1>0成立,即 在x∈(2,+∞)某子區(qū)間上恒成立,令h(x)=,求得h(x)的最小值為,故

(2)由已知a>0

令f′(x)=3ax2+2x-1>0

故f(x)在區(qū)間()上是減函數(shù), 即f(x)在區(qū)間()上恒大于零。故當(dāng)a>0時(shí),函數(shù)在f(x)在區(qū)間()上不存在零點(diǎn)

20、(1)f(1)=3………………………………………………………………………………(1分)

        f(2)=6………………………………………………………………………………(2分)

        當(dāng)x=1時(shí),y=2n,可取格點(diǎn)2n個(gè);當(dāng)x=2時(shí),y=n,可取格點(diǎn)n個(gè)

        ∴f(n)=3n…………………………………………………………………………(4分)

  

   (2)………………………………………………(9分)

       

        ∴T1<T2=T3>T4>…>Tn

        故Tn的最大值是T2=T3=

        ∴m≥………………………………………………………………()

 

 

21、解:(Ⅰ)設(shè),

,      …………………2分

                   …………………3分

.                 ………………………………………………4分

∴動(dòng)點(diǎn)M的軌跡C是以O(shè)(0,0)為頂點(diǎn),以(1,0)為焦點(diǎn)的拋物線(除去原點(diǎn)).

             …………………………………………5分

(Ⅱ)解法一:(1)當(dāng)直線垂直于軸時(shí),根據(jù)拋物線的對(duì)稱性,有;

                                                         ……………6分

(2)當(dāng)直線軸不垂直時(shí),依題意,可設(shè)直線的方程為,,則AB兩點(diǎn)的坐標(biāo)滿足方程組

消去并整理,得

,

.   ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

,

.

綜合(1)、(2)可知.                  …………………10分

解法二:依題意,設(shè)直線的方程為,則A,B兩點(diǎn)的坐標(biāo)滿足方程組:

消去并整理,得

,

. ……………7分

設(shè)直線AEBE的斜率分別為,則:

.  …………………9分

,

,

.        ……………………………………………………10分

(Ⅲ)假設(shè)存在滿足條件的直線,其方程為AD的中點(diǎn)為,AD為直徑的圓相交于點(diǎn)F、G,FG的中點(diǎn)為H,則,點(diǎn)的坐標(biāo)為.

,

,

 .                  …………………………12分

,

,得

此時(shí),.

∴當(dāng),即時(shí),(定值).

∴當(dāng)時(shí),滿足條件的直線存在,其方程為;當(dāng)時(shí),滿足條件的直線不存在.    

 


同步練習(xí)冊(cè)答案