2.過點(1,2) 且與向量平行的直線的點方向式方程是 . 查看更多

 

題目列表(包括答案和解析)

過點A(1,-2),且與向量平行的直線的方程是( )
A.4x-3y-10=0
B.4x+3y+10=0
C.3x+4y+5=0
D.3x-4y+5=0

查看答案和解析>>

過點A(1,-2),且與向量數(shù)學(xué)公式平行的直線的方程是


  1. A.
    4x-3y-10=0
  2. B.
    4x+3y+10=0
  3. C.
    3x+4y+5=0
  4. D.
    3x-4y+5=0

查看答案和解析>>

已知與向量
e
=(1,
3
)平行的直線l1過點A(0,-2
3
),橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的中心關(guān)于直線l1的對稱點在直線x=
a2
c
(c2=a2-b2)上,且直線l1過橢圓C的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-2,0)的直線l2交橢圓C于M,N兩點,若∠MON≠
π
2
,且(
OM
ON
)•sin∠MON=
4
6
3
,(O為坐標(biāo)原點),求直線l12的方程.

查看答案和解析>>

已知與向量
e
=(1,
3
)平行的直線l1過點A(0,-2
3
),橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的中心關(guān)于直線l1的對稱點在直線x=
a2
c
(c2=a2-b2)上,且直線l1過橢圓C的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-2,0)的直線l2交橢圓C于M,N兩點,若∠MON≠
π
2
,且(
OM
ON
)•sin∠MON=
4
6
3
,(O為坐標(biāo)原點),求直線l12的方程.

查看答案和解析>>

一直線過點(2,1),且與向量(-1,1)平行,

(1)求參數(shù)方程;

(2)求P(-1,-2)到直線的距離d.

查看答案和解析>>

 

一、填空題

1.   2.    3.2   4.  5. i100   6.  7. 2

8.    9.   10.   11.   12.

二、選擇題

13.   14.A  15.A.  16. D

三、解答題

17.

   (1)由題意可得:=5----------------------------------------------------------(2分)

由:  得:=314---------------------------------------(4分)

或:,

   (2)方法一:由:------(1分)

        或---------(1分)

得:0.0110-----------------------------------------------------------------(1分)

方法二:由:

得:-----------------------------------------------------------------(1分)

由:點和點的縱坐標(biāo)相等,可得點和點關(guān)于點對稱

即:------------------------------------------------------------(1分)

得:0.011-----------------------------------------------------------------------(1分)

 

 

 

18.(1),是等腰三角形,

的中點,,--------------(1分)

底面.----(2分)

-------------------------------(1分)

于是平面.----------------------(1分)

   (2)過,連接----------------(1分)

平面,

,-----------------------------------(1分)

平面,---------------------------(1分)

就是直線與平面所成角。---(2分)

中,

----------------------------------(2分)

所以,直線與平面所成角--------(1分)

19.解:

   (1)函數(shù)的定義域為;------------------------------------(1分)

當(dāng);當(dāng);--------------------------------------------------(1分)

所以,函數(shù)在定義域上不是單調(diào)函數(shù),------------------(1分)

所以它不是“類函數(shù)” ------------------------------------------------------------------(1分)

   (2)當(dāng)小于0時,則函數(shù)不構(gòu)成單調(diào)函數(shù);(1分)

當(dāng)=0時,則函數(shù)單調(diào)遞增,

但在上不存在定義域是值域也是的區(qū)間---------------(1分)

當(dāng)大于0時,函數(shù)在定義域里單調(diào)遞增,----(1分)

要使函數(shù)是“類函數(shù)”,

即存在兩個不相等的常數(shù) ,

使得同時成立,------------------------------------(1分)

即關(guān)于的方程有兩個不相等的實根,--------------------------------(2分)

,--------------------------------------------------------------------------(1分)

亦即直線與曲線上有兩個不同的交點,-(1分)

所以,-------------------------------------------------------------------------------(2分)

20.解:

   (1)

,由,得數(shù)列構(gòu)成等比數(shù)列------------------(3分)

,,數(shù)列不構(gòu)成等比數(shù)列--------------------------------------(1分)

   (2)由,得:-------------------------------------(1分)

---------------------------------------------------------(1分)

----------------------------------------------(1分)

----(1分)

------------------------------------------------------------------(1分)

---------------------------------------------------------------------(1分)

   (3)若對任意,不等式恒成立,

即:

-------------------------------------------(1分)

令:,當(dāng)時,有最大值為0---------------(1分)

令:

------------------------------------------------------(1分)

當(dāng)

---------------------------------------------------------(1分)

所以,數(shù)列從第二項起單調(diào)遞減

當(dāng)時,取得最大值為1-------------------------------(1分)

所以,當(dāng)時,不等式恒成立---------(1分)

21. 解:

   (1)雙曲線焦點坐標(biāo)為,漸近線方程---(2分)

雙曲線焦點坐標(biāo),漸近線方程----(2分)

   (2)

得方程: -------------------------------------------(1分)

設(shè)直線分別與雙曲線的交點  的坐標(biāo)分別為,線段 中點為坐標(biāo)為

----------------------------------------------------------(1分)

得方程: ----------------------------------------(1分)

設(shè)直線分別與雙曲線的交點  的坐標(biāo)分別為,線段 中點為坐標(biāo)為

---------------------------------------------------(1分)

,-----------------------------------------------------------(1分)

所以,線段不相等------------------------------------(1分)

   (3)

若直線斜率不存在,交點總個數(shù)為4;-------------------------(1分)

若直線斜率存在,設(shè)斜率為,直線方程為

直線與雙曲線

    得方程:   ①

直線與雙曲線

     得方程:    ②-----------(1分)

 

的取值

直線與雙曲線右支的交點個數(shù)

直線與雙曲線右支的交點個數(shù)

交點總個數(shù)

1個(交點

1個(交點

2個

1個(,

1個(

2個

1個(與漸進(jìn)線平行)

1個(理由同上)

2個

2個(,方程①兩根都大于2)

1個(理由同上)

3個

2個(理由同上)

1個(與漸進(jìn)線平行)

3個

2個(理由同上)

2個(,方程②

兩根都大于1)

4個

得:-------------------------------------------------------------------(3分)

由雙曲線的對稱性可得:

的取值

交點總個數(shù)

2個

2個

3個

3個

4個

得:-------------------------------------------------------------------(2分)

綜上所述:(1)若直線斜率不存在,交點總個數(shù)為4;

   (2)若直線斜率存在,當(dāng)時,交點總個數(shù)為2個;當(dāng) 時,交點總個數(shù)為3個;當(dāng)時,交點總個數(shù)為4個;---------------(1分)

 

 

 


同步練習(xí)冊答案