題目列表(包括答案和解析)
(本題滿分15分)已知圓N:和拋物線C:,圓的切線與拋物線C交于不同的兩點A,B,
(1)當直線的斜率為1時,求線段AB的長;
(2)設點M和點N關于直線對稱,問是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.
(本小題滿分12分)
已知橢圓的離心率為,過右焦點F的直線與C相交于A、B兩點,當直線的斜率為1時,坐標原點O到的距離為。
(1)求的值;
(2)橢圓C上是否存在點P,使得當繞F轉到某一位置時,有成立?若存在,求出所有的點P的坐標與的方程;若不存在,說明理由
(本小題滿分12分)
橢圓的離心率,過右焦點的直線與橢圓相交
于A、B兩點,當直線的斜率為1時,坐標原點到直線的距離為
⑴求橢圓C的方程;
⑵橢圓C上是否存在點,使得當直線繞點轉到某一位置時,有成
立?若存在,求出所有滿足條件的點的坐標及對應的直線方程;若不存在,請說明理由.
(本小題滿分11分)已知拋物線關于軸對稱,它的頂點在坐標原點,并且經過點。
(1)求拋物線的標準方程;
(2)若的三個頂點在拋物線上,且點的橫坐標為1,過點分別作拋物線的切線,兩切線相交于點,直線與軸交于點,當直線的斜率在上變化時,直線斜率是否存在最大值,若存在,求其最大值和直線的方程;若不存在,請說明理由。
(本題14分)已知橢圓的中心在坐標原點,焦點在軸上,短軸長為2,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點.過右焦點與軸不垂直的直線交橢圓于,兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)當直線的斜率為1時,求的面積;
(Ⅲ)在線段上是否存在點,使得以為鄰邊的平行四邊形是菱形?
若存在,求出的取值范圍;若不存在,請說明理由.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com