(3)過點P作y軸的平行線與曲線C的另一交點為S.若.證明 查看更多

 

題目列表(包括答案和解析)

已知雙曲線G的中心在原點,它的漸近線與圓相切,過點P(-4,0)作斜率為的直線l,使得lG交于A、B兩點,和y軸交于點C,并且點P在線段AB上,又滿足

(1)求雙曲線G的漸近線方程

(2)求雙曲線G的方程

(3)橢圓S的中心在原點,它的短軸是G的實軸,如果S中垂直于l的平行弦的中點軌跡恰好是G的漸近線截在S內(nèi)的部分,求橢圓S的方程。

查看答案和解析>>

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為數(shù)學公式的直線l,使得l和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸、如果S中垂直于l的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當△ABP的面積最大時點P的坐標.

查看答案和解析>>

已知圓C的方程為x2+y2=4.

(1)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=,求直線l的方程;

(2)過圓C上一動點M作平行于x軸的直線m,設(shè)m與y軸的交點為N,若向量,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

(文)(本小題共13分)已知圓C的方程為x2+y2=4.

(1)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=,求直線l的方程;

(2)圓C上一動點M(x0,y0),=(0,y0),若向量,求動點Q的軌跡方程,并說明此軌跡是什么曲線.

查看答案和解析>>

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線l,使得l和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸、如果S中垂直于l的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當△ABP的面積最大時點P的坐標.

查看答案和解析>>

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線l,使得l和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于l的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分,求橢圓S的方程.

查看答案和解析>>

一、選擇題(每小題5分,共50分)

1―5:ABCDC    6―10:BAAAD   

二、填空題(每小題4分,共24分)

11.;12.99;13.207;14.0;15.2;

16.[1,2]或填[3,4]或填它們的任一子區(qū)間(答案有無數(shù)個)。

三、解答題(共76分)

17.(1)解:由

      有………………2分

      由,……………3分

      由余弦定理……5分

      當…………7分

   (2)由

      則,……………………9分

      由

      ……………………13分

18.(本小題滿分13分)

解:(1)①只安排2位接線員,則2路及2路以下電話同時打入均能接通,其概率

     

      故所求概率;……………………4分

      ②“損害度” ………………8分

   (2)∵在一天的這一時間內(nèi)同時電話打入數(shù)ξ的數(shù)學期望為

      0×0.13+1×0.35+2×0.27+3×0.14+4×0.85+5×0.02+6×0.01=1.79

      ∴一周五個工作日的這一時間電話打入數(shù)ξ的數(shù)學期望等于5×1.79=8.95.……13分

19.(1)連結(jié)B1D1,過F作B1D1的垂線,垂足為K.

      ∵BB1與兩底面ABCD,A1B1C1D1都垂直.

      FK⊥BB1

      ∴FK⊥B1D1             FK⊥平面BDD1B1

      B1D1∩BB1=B1

      又AE⊥BB1

      又AE⊥BD    AE⊥平面BDD1B1            因此KF∥AE.

      BB1∩BD=B

      ∴∠BFK為異面直線BF與AE所成的角,連結(jié)BK,由FK⊥面BDD1B1得FK⊥BK,

      從而△BKF為Rt△.

      在Rt△B1KF和Rt△B1D1A1中,由得:

     

      又BF=.   

      ∴異面直線BF與AE所成的角為arccos.……………………4分

   (2)由于DA⊥平面AA1B由A作BF的垂線AG,垂足為G,連結(jié)DG,由三垂線定理

        知BG⊥DG.

      ∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角. 且∠DAG=90°

      在平面AA1B1B中,延長BF與AA1交于點S.

    <form id="k95mm"></form>

              ∴A1、F分別是SA、SB的中點.   即SA=2A1A=2=AB.

              ∴Rt△BAS為等腰直角三角形,垂足G點實為斜邊SB的中點F,即F、G重合.

              易得AG=AF=SB=,在Rt△BAS中,AD=

              ∴tan∠AGD=

              即平面BDF與平面AA1B1B所成二面角(銳角)的大小為arctan .…………9分

           (3)由(2)知平面AFD是平面BDF與平面AA1B1B所成二面角的平面角所在的平面.

              ∴面AFD⊥面BDF.

              在Rt△ADF中,由A作AH⊥DF于H,則AH即為點A到平面BDF的距離.

              由AH?DF=AD?AF,得

              所以點A到平面BDF的距離為……………………13分

        20.解:(1)∵點都在斜率為6的同一條直線上,

             

              于是數(shù)列是等差數(shù)列,故……………………3分

              共線,

             

              當n=1時,上式也成立.

              所以………………8分

           (2)把代入上式,

              得

             

              ∴當n=4時,取最小值,最小值為………………13分

        21.解:

              ,

              ……………………3分

           (1)的兩個實根,

              ∵方程有解,………………7分

           (2)由,

             

              ……………………12分

              法二:

        22.(1)設(shè)點T的坐標為,點M的坐標為,則M1的坐標為(0,),

              ,于是點N的坐標為,N1的坐標

              為,所以

              由

              由此得

              由

              即所求的方程表示的曲線C是橢圓. ……………………3分

           (2)點A(5,0)在曲線C即橢圓的外部,當直線l的斜率不存在時,直線l與橢圓C

              無交點,所以直線l斜率存在,并設(shè)為k. 直線l的方程為

              由方程組

              依題意

              當時,設(shè)交點PQ的中點為,

              則

             

              又

             

              而不可能成立,所以不存在直線l,使得|BP|=|BQ|.…………7分

           (3)由題意有,則有方程組

                由(1)得  (5)

              將(2),(5)代入(3)有

              整理并將(4)代入得,

              易知

              因為B(1,0),S,故,所以

             

              …………12分

         


        同步練習冊答案