(1)試用與n來表示, 查看更多

 

題目列表(包括答案和解析)

為了調查高中學生是否喜歡數(shù)學與性別的關系,某班采取分層抽樣的方法從2011屆高一學生中隨機抽出20名學生進行調查,具體情況如下表所示.
喜歡數(shù)學 7 3
不喜歡數(shù)學 3 7
(Ⅰ)用獨立性檢驗的方法分析有多大的把握認為本班學生是否喜歡數(shù)學與性別有關?
(參考公式和數(shù)據(jù):
(1)k2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)
,
(2)①當k2≤2.706時,可認為兩個變量是沒有關聯(lián)的;②當k2>2.706時,有90%的把握判定兩個變量有關聯(lián);③當k2>3.841時,有95%的把握判定兩個變量有關聯(lián);④當k2>6.635時,有99%的把握判定兩個變量有關聯(lián).)
(Ⅱ)若按下面的方法從這個20個人中抽取1人來了解有關情況:將一個標有數(shù)字1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號,試求:
①抽到號碼是6的倍數(shù)的概率;
②抽到“無效序號(序號大于20)”的概率.

查看答案和解析>>

已知向量
a
b
的夾角為60°,且|
a
|=1,|
b
|=2
,設
m
=3
a
-
b
,
n
=t
a
+2
b

(1)求
a
b
;  (2)試用t來表示
m
n
的值;(3)若
m
n
的夾角為鈍角,試求實數(shù)t的取值范圍.

查看答案和解析>>

已知向量
a
,
b
的夾角為60°,且|
a
|=1,|
b
|=2
,設
m
=3
a
-
b
,
n
=t
a
+2
b

(1)求
a
b
;  (2)試用t來表示
m
n
的值;(3)若
m
n
的夾角為鈍角,試求實數(shù)t的取值范圍.

查看答案和解析>>

在平面直角坐標系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量與向量共線,且點Bn(n,bn)(n∈N*)都在斜率為6的同一條直線上.

(1)試用a1,b1與n來表示an,bn;

(2)設a1=a,b1=-a,且12<a≤15,求數(shù)列{an}中的最小值的項.

查看答案和解析>>

在平面直角坐標系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量與向量共線,且點Bn(n,bn)(n∈N*)都在斜率為6的同一條直線上.

(1)試用a1,b1與n來表示an,bn;

(2)設a1=a,b1=-a,且12<a≤15,求數(shù)列{an}中的最小值的項.

查看答案和解析>>

一、選擇題(每小題5分,共50分)

1―5:ABCDC    6―10:BAAAD   

二、填空題(每小題4分,共24分)

11.;12.99;13.207;14.0;15.2;

16.[1,2]或填[3,4]或填它們的任一子區(qū)間(答案有無數(shù)個)。

三、解答題(共76分)

17.(1)解:由

      有………………2分

      由,……………3分

      由余弦定理……5分

      當…………7分

   (2)由

      則,……………………9分

      由

      ……………………13分

18.(本小題滿分13分)

解:(1)①只安排2位接線員,則2路及2路以下電話同時打入均能接通,其概率

     

      故所求概率;……………………4分

      ②“損害度” ………………8分

   (2)∵在一天的這一時間內(nèi)同時電話打入數(shù)ξ的數(shù)學期望為

      0×0.13+1×0.35+2×0.27+3×0.14+4×0.85+5×0.02+6×0.01=1.79

      ∴一周五個工作日的這一時間電話打入數(shù)ξ的數(shù)學期望等于5×1.79=8.95.……13分

19.(1)連結B1D1,過F作B1D1的垂線,垂足為K.

      ∵BB1與兩底面ABCD,A1B1C1D1都垂直.

      FK⊥BB1

      ∴FK⊥B1D1             FK⊥平面BDD1B1,

      B1D1∩BB1=B1

      又AE⊥BB1

      又AE⊥BD    AE⊥平面BDD1B1            因此KF∥AE.

      BB1∩BD=B

      ∴∠BFK為異面直線BF與AE所成的角,連結BK,由FK⊥面BDD1B1得FK⊥BK,

      從而△BKF為Rt△.

      在Rt△B1KF和Rt△B1D1A1中,由得:

     

      又BF=.   

      ∴異面直線BF與AE所成的角為arccos.……………………4分

   (2)由于DA⊥平面AA1B由A作BF的垂線AG,垂足為G,連結DG,由三垂線定理

        知BG⊥DG.

      ∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角. 且∠DAG=90°

      在平面AA1B1B中,延長BF與AA1交于點S.

      1. <blockquote id="smnzy"></blockquote>

          <abbr id="smnzy"><dl id="smnzy"></dl></abbr>
        • <track id="smnzy"></track>

                ∴A1、F分別是SA、SB的中點.   即SA=2A1A=2=AB.

                ∴Rt△BAS為等腰直角三角形,垂足G點實為斜邊SB的中點F,即F、G重合.

                易得AG=AF=SB=,在Rt△BAS中,AD=

                ∴tan∠AGD=

                即平面BDF與平面AA1B1B所成二面角(銳角)的大小為arctan .…………9分

             (3)由(2)知平面AFD是平面BDF與平面AA1B1B所成二面角的平面角所在的平面.

                ∴面AFD⊥面BDF.

                在Rt△ADF中,由A作AH⊥DF于H,則AH即為點A到平面BDF的距離.

                由AH?DF=AD?AF,得

                所以點A到平面BDF的距離為……………………13分

          20.解:(1)∵點都在斜率為6的同一條直線上,

               

                于是數(shù)列是等差數(shù)列,故……………………3分

                共線,

               

                當n=1時,上式也成立.

                所以………………8分

             (2)把代入上式,

                得

                ,

                ∴當n=4時,取最小值,最小值為………………13分

          21.解:

                ,

                ……………………3分

             (1)的兩個實根,

                ∵方程有解,………………7分

             (2)由,

               

                ……………………12分

                法二:

          22.(1)設點T的坐標為,點M的坐標為,則M1的坐標為(0,),

                ,于是點N的坐標為,N1的坐標

                為,所以

                由

                由此得

                由

                即所求的方程表示的曲線C是橢圓. ……………………3分

             (2)點A(5,0)在曲線C即橢圓的外部,當直線l的斜率不存在時,直線l與橢圓C

                無交點,所以直線l斜率存在,并設為k. 直線l的方程為

                由方程組

                依題意

                當時,設交點PQ的中點為

                則

               

                又

               

                而不可能成立,所以不存在直線l,使得|BP|=|BQ|.…………7分

             (3)由題意有,則有方程組

                  由(1)得  (5)

                將(2),(5)代入(3)有

                整理并將(4)代入得,

                易知

                因為B(1,0),S,故,所以

               

                …………12分

           


          同步練習冊答案