20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)有一問題,在半小時內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是

 如果兩人都試圖獨(dú)立地在半小時內(nèi)解決它,計算:w.w.w.k.s.5.u.c.o.m      

   (1)兩人都未解決的概率;

   (2)問題得到解決的概率。

查看答案和解析>>

(本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

(1) 求數(shù)列、的通項(xiàng)公式;

(2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

(本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時,A地至B地之間的航行距離約為500海里,每小時的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時960元.

(1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時)的函數(shù);

(2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

查看答案和解析>>

(本小題滿分13分)

如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個不同點(diǎn),且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點(diǎn),都與平面ABCD垂直,

(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

體ABCDEF的體積。

 

查看答案和解析>>

(本小題滿分13分)兩個人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

查看答案和解析>>

一、選擇題(每小題5分,共50分)

1―5:ABCDC    6―10:BAAAD   

二、填空題(每小題4分,共24分)

11.;12.99;13.207;14.0;15.2;

16.[1,2]或填[3,4]或填它們的任一子區(qū)間(答案有無數(shù)個)。

三、解答題(共76分)

17.(1)解:由

      有………………2分

      由,……………3分

      由余弦定理……5分

      當(dāng)…………7分

   (2)由

      則,……………………9分

      由

      ……………………13分

18.(本小題滿分13分)

解:(1)①只安排2位接線員,則2路及2路以下電話同時打入均能接通,其概率

     

      故所求概率;……………………4分

      ②“損害度” ………………8分

   (2)∵在一天的這一時間內(nèi)同時電話打入數(shù)ξ的數(shù)學(xué)期望為

      0×0.13+1×0.35+2×0.27+3×0.14+4×0.85+5×0.02+6×0.01=1.79

      ∴一周五個工作日的這一時間電話打入數(shù)ξ的數(shù)學(xué)期望等于5×1.79=8.95.……13分

19.(1)連結(jié)B1D1,過F作B1D1的垂線,垂足為K.

      ∵BB1與兩底面ABCD,A1B1C1D1都垂直.

      FK⊥BB1

      ∴FK⊥B1D1             FK⊥平面BDD1B1,

      B1D1∩BB1=B1

      又AE⊥BB1

      又AE⊥BD    AE⊥平面BDD1B1            因此KF∥AE.

      BB1∩BD=B

      ∴∠BFK為異面直線BF與AE所成的角,連結(jié)BK,由FK⊥面BDD1B1得FK⊥BK,

      從而△BKF為Rt△.

      在Rt△B1KF和Rt△B1D1A1中,由得:

     

      又BF=.   

      ∴異面直線BF與AE所成的角為arccos.……………………4分

   (2)由于DA⊥平面AA1B由A作BF的垂線AG,垂足為G,連結(jié)DG,由三垂線定理

        知BG⊥DG.

      ∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角. 且∠DAG=90°

      在平面AA1B1B中,延長BF與AA1交于點(diǎn)S.

        •       ∴A1、F分別是SA、SB的中點(diǎn).   即SA=2A1A=2=AB.

                ∴Rt△BAS為等腰直角三角形,垂足G點(diǎn)實(shí)為斜邊SB的中點(diǎn)F,即F、G重合.

                易得AG=AF=SB=,在Rt△BAS中,AD=

                ∴tan∠AGD=

                即平面BDF與平面AA1B1B所成二面角(銳角)的大小為arctan .…………9分

             (3)由(2)知平面AFD是平面BDF與平面AA1B1B所成二面角的平面角所在的平面.

                ∴面AFD⊥面BDF.

                在Rt△ADF中,由A作AH⊥DF于H,則AH即為點(diǎn)A到平面BDF的距離.

                由AH?DF=AD?AF,得

                所以點(diǎn)A到平面BDF的距離為……………………13分

          20.解:(1)∵點(diǎn)都在斜率為6的同一條直線上,

               

                于是數(shù)列是等差數(shù)列,故……………………3分

                共線,

               

                當(dāng)n=1時,上式也成立.

                所以………………8分

             (2)把代入上式,

                得

                ,

                ∴當(dāng)n=4時,取最小值,最小值為………………13分

          21.解:

                ,

                ……………………3分

             (1)的兩個實(shí)根,

                ∵方程有解,………………7分

             (2)由,

               

                ……………………12分

                法二:

          22.(1)設(shè)點(diǎn)T的坐標(biāo)為,點(diǎn)M的坐標(biāo)為,則M1的坐標(biāo)為(0,),

                ,于是點(diǎn)N的坐標(biāo)為,N1的坐標(biāo)

                為,所以

                由

                由此得

                由

                即所求的方程表示的曲線C是橢圓. ……………………3分

             (2)點(diǎn)A(5,0)在曲線C即橢圓的外部,當(dāng)直線l的斜率不存在時,直線l與橢圓C

                無交點(diǎn),所以直線l斜率存在,并設(shè)為k. 直線l的方程為

                由方程組

                依題意

                當(dāng)時,設(shè)交點(diǎn)PQ的中點(diǎn)為

                則

               

                又

               

                而不可能成立,所以不存在直線l,使得|BP|=|BQ|.…………7分

             (3)由題意有,則有方程組

                  由(1)得  (5)

                將(2),(5)代入(3)有

                整理并將(4)代入得,

                易知

                因?yàn)锽(1,0),S,故,所以

               

                …………12分

           


          同步練習(xí)冊答案