(2)求二面角的平面角的余弦值. 查看更多

 

題目列表(包括答案和解析)

平面圖形ABB2A2C3C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=數(shù)學(xué)公式,A1B1=A1C1=數(shù)學(xué)公式.現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長(zhǎng);
(Ⅲ)求二面角A-BC-A1的余弦值.

查看答案和解析>>

平面圖形ABB2A2C3C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長(zhǎng);
(Ⅲ)求二面角A-BC-A1的余弦值.

查看答案和解析>>

平面圖形ABB2A2C3C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1=.現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長(zhǎng);
(Ⅲ)求二面角A-BC-A1的余弦值.

查看答案和解析>>

平面圖形ABB1A1C1C如下圖1所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=,A1B1=A1C1.現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使ΔABC與ΔA1B1C1所在平面都與平面BB1C1C垂直,再分別連接AA1,BA1,CA1,得到如下圖2所示的空間圖形,對(duì)此空間圖形解答下列問題.

(Ⅰ)證明:AA1⊥BC;

(Ⅱ)求AA1的長(zhǎng);

(Ⅲ)求二面角A-BC-A1的余弦值.

查看答案和解析>>

如圖平面SAC⊥平面ACB,△SAC是邊長(zhǎng)為4的等邊三角形,△ACB為直角三角形,∠ACB=90°,BC=4
2
,求二面角S-AB-C的余弦值.

查看答案和解析>>


同步練習(xí)冊(cè)答案