所以函數(shù)y= g(x)在(0.)上是增函數(shù);在(.1)上是減函數(shù). 查看更多

 

題目列表(包括答案和解析)

16.(2)解(1)當(dāng)a=1,b=-2時,g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,

這時函數(shù)g(x)只有兩個零點,所以(1)不對

(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時g(x)有超過2的零點

(3)當(dāng)a<0時, y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關(guān)于原點對稱了,肯定不是奇函數(shù);當(dāng)b=0時才是奇函數(shù),所以(3)不對。所以正確的只有(2)

為了考察高中生學(xué)習(xí)語文與數(shù)學(xué)之間的關(guān)系,在某中學(xué)學(xué)生中隨機(jī)地抽取了610名學(xué)生得到如下列表:

 語文

數(shù)學(xué)

及格

不及格

總計 

及格

310

142

452

不及格

94

64

158

總計

404

206

610

 由表中數(shù)據(jù)計算及的觀測值問在多大程度上可以認(rèn)為高中生的語文與數(shù)學(xué)成績之間有關(guān)系?為什么?

查看答案和解析>>

16.(2)解(1)當(dāng)a=1,b=-2時,g(x)=f(x)-2,把f(x)圖象向下平移兩個單位就可得到g(x)圖象,
這時函數(shù)g(x)只有兩個零點,所以(1)不對
(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對稱圖象,然后向下平移不超過2個單位就可得到g(x)圖象,這時g(x)有超過2的零點
(3)當(dāng)a<0時, y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會再關(guān)于原點對稱了,肯定不是奇函數(shù);當(dāng)b=0時才是奇函數(shù),所以(3)不對。所以正確的只有(2)
為了考察高中生學(xué)習(xí)語文與數(shù)學(xué)之間的關(guān)系,在某中學(xué)學(xué)生中隨機(jī)地抽取了610名學(xué)生得到如下列表:
 語文
數(shù)學(xué)
及格
不及格
總計 
及格
310
142
452
不及格
94
64
158
總計
404
206
610
 由表中數(shù)據(jù)計算及的觀測值問在多大程度上可以認(rèn)為高中生的語文與數(shù)學(xué)成績之間有關(guān)系?為什么?

查看答案和解析>>

已知向量
m
=(sinx,1),
n
=(
3
Acosx,
A
2
cos2x)(A>0)
,函數(shù)f(x)=
m
n
-1
的最大值為3.
(Ⅰ)求A以及最小正周期T;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移
π
12
個單位,再將所得圖象上各點的橫坐標(biāo)縮短為原來的
1
2
倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.求g(x)在[-
π
12
,
π
6
]
上的最小值,以及此時對應(yīng)的x的值.

查看答案和解析>>

已知向量
m
=(sinx,1),
n
=(
3
Acosx,
A
2
cos2x)(A>0)
,函數(shù)f(x)=
m
n
-1
的最大值為3.
(Ⅰ)求A以及最小正周期T;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移
π
12
個單位,再將所得圖象上各點的橫坐標(biāo)縮短為原來的
1
2
倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.求g(x)在[-
π
12
π
6
]
上的最小值,以及此時對應(yīng)的x的值.

查看答案和解析>>

對于任意的實數(shù)a,b,記.若F(x)=max{f(x),g(x)}(x∈R),其中函數(shù)  y=f(x)(x∈R)是奇函數(shù),且當(dāng)x≥0時,f(x)=(x-1)2-2;函數(shù)y=g(x)(x∈R)是正比例函數(shù),其圖象與x≥0時函數(shù)y=f(x)的圖象如圖所示,則下列關(guān)于函數(shù)y=F(x)的說法中,正確的是( )

A.y=F(x)為奇函數(shù)
B.y=F(x)在(-3,0)上為增函數(shù)
C.y=F(x)的最小值為-2,最大值為2
D.以上說法都不正確

查看答案和解析>>


同步練習(xí)冊答案