由余弦定理.得 .則.即.所以B的大小是或. 查看更多

 

題目列表(包括答案和解析)

如圖,在正四棱錐中,

(1)求該正四棱錐的體積;

(2)設為側棱的中點,求異面直線

所成角的大。

【解析】第一問利用設為底面正方形中心,則為該正四棱錐的高由已知,可求得,

所以,

第二問設中點,連結、

可求得,,,

中,由余弦定理,得

所以,

 

查看答案和解析>>

給出問題:已知滿足,試判定的形狀.某學生的解答如下:

解:(i)由余弦定理可得,

,

,

,

是直角三角形.

(ii)設外接圓半徑為.由正弦定理可得,原式等價于

,

是等腰三角形.

綜上可知,是等腰直角三角形.

請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果.           .

 

查看答案和解析>>

已知函數(shù).]

(1)求函數(shù)的最小值和最小正周期;

(2)設的內角、、的對邊分別為,,且,

,求,的值.

【解析】第一問利用

得打周期和最值

第二問

 

,由正弦定理,得,①  

由余弦定理,得,即,②

由①②解得

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設平面PCD的法向量

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

已知中,內角的對邊的邊長分別為,且

(I)求角的大;

(II)若的最小值.

【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,

第二問,

三角函數(shù)的性質運用。

解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB, 

(Ⅱ)由(Ⅰ)可知 

,,則當 ,即時,y的最小值為

 

查看答案和解析>>


同步練習冊答案