題目列表(包括答案和解析)
【解析】如圖:|OB|=b,|O F1|=c.∴kPQ=,kMN=﹣.
直線PQ為:y=(x+c),兩條漸近線為:y=x.由,得:Q(,);由,得:P(,).∴直線MN為:y-=﹣(x-),
令y=0得:xM=.又∵|MF2|=|F1F2|=2c,∴3c=xM=,解之得:,即e=.
【答案】B
設向量.
(Ⅰ)求;
(Ⅱ)若函數(shù),求的最小值、最大值.
【解析】第一問中,利用向量的坐標表示,表示出數(shù)量積公式可得
第二問中,因為,即換元法
令得到最值。
解:(I)
(II)由(I)得:
令
.
時,
把函數(shù)的圖象按向量平移得到函數(shù)的圖象.
(1)求函數(shù)的解析式; (2)若,證明:.
【解析】本試題主要考查了函數(shù) 平抑變換和運用函數(shù)思想證明不等式。第一問中,利用設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 ,便可以得到結論。第二問中,令,然后求導,利用最小值大于零得到。
(1)解:設上任意一點為(x,y)則平移前對應點是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 證明:令,……6分
則……8分
,∴,∴在上單調遞增.……10分
故,即
函數(shù)的一系列對應值如下表:
(1)根據(jù)表中數(shù)據(jù)求出f(x)的解析式;
(2)指出函數(shù)f(x)的圖象是由函數(shù)y=sinx(x∈R)的圖象經(jīng)過怎樣的變化而得到的;
(3)令,若g(x)在時有兩個零點,求a的取值范圍.
函數(shù)的一系列對應值如下表:
(1)根據(jù)表中數(shù)據(jù)求出f(x)的解析式;
(2)指出函數(shù)f(x)的圖象是由函數(shù)y=sinx(x∈R)的圖象經(jīng)過怎樣的變化而得到的;
(3)令,若g(x)在時有兩個零點,求a的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com