題目列表(包括答案和解析)
解:因為有負(fù)根,所以在y軸左側(cè)有交點,因此
解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。
如圖,在四棱錐中,⊥底面,底面為正方形,,,分別是,的中點.
(I)求證:平面;
(II)求證:;
(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.
【解析】第一問利用線面平行的判定定理,,得到
第二問中,利用,所以
又因為,,從而得
第三問中,借助于等體積法來求解三棱錐B-EFC的體積.
(Ⅰ)證明: 分別是的中點,
,. …4分
(Ⅱ)證明:四邊形為正方形,.
, .
, ,
.,. ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,
∴
請先閱讀:
設(shè)平面向量=(a1,a2),=(b1,b2),且與的夾角為è,
因為=||||cosè,
所以≤||||.
即,
當(dāng)且僅當(dāng)è=0時,等號成立.
(I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)試求函數(shù)的最大值.
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
|
|
a | 2 1 |
a | 2 2 |
a | 2 3 |
b | 2 1 |
b | 2 2 |
b | 2 3 |
x |
2x-2 |
8-3x |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com