(II)求證:(其中e為自然對數(shù)的底數(shù)), 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)學(xué)公式,其中f(x)=lnx,且g(e)=數(shù)學(xué)公式(e為自然對數(shù)的底數(shù))
(I)求p與q的關(guān)系;
(II)若g(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(III)證明:
①f(1+x)≤x?(x>-1);
數(shù)學(xué)公式(n∈N,n≥2).

查看答案和解析>>

已知函數(shù)f(x)=-2x2+4x,g(x)=alnx(a>0)
(I)若直線l1交函數(shù)f(x)的圖象于P,Q兩點(diǎn),與l1平行的直線l2與函數(shù)f(x)的圖象切于點(diǎn)R,求證 P,R,Q三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(II)若不等式f(x)≤4x-g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(III)求證:+++…+〔其中n≥2,n∈N*,e為自然對數(shù)的底數(shù)).

查看答案和解析>>

(2012•綿陽二模)已知函數(shù)f(x)=-2x2+4x,g(x)=alnx(a>0)
(I)若直線l1交函數(shù)f(x)的圖象于P,Q兩點(diǎn),與l1平行的直線l2與函數(shù)f(x)的圖象切于點(diǎn)R,求證 P,R,Q三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(II)若不等式f(x)≤4x-g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(III)求證:
ln2
24
+
ln3
34
+
ln4
44
+…+
lnn
n4
1
e
〔其中n≥2,n∈N*,e為自然對數(shù)的底數(shù)).

查看答案和解析>>

(14分)已知數(shù)列為方向向量的直線上,(I)求數(shù)列的通項(xiàng)公式;(II)求證:(其中e為自然對數(shù)的底數(shù));

(III)記

求證:

查看答案和解析>>

己知函數(shù)f(x)=數(shù)學(xué)公式-1(其中a是不為0的實(shí)數(shù)),g(x)=lnx,設(shè)F(x)=f(x)+g(x).
(I )判斷函數(shù)F(x)在(0,3]上的單調(diào)性;
(II)已知s,t為正實(shí)數(shù),求證:ttex≥stet(其中e為自然對數(shù)的底數(shù));
(III)是否存在實(shí)數(shù)m,使得函數(shù)y=f(數(shù)學(xué)公式)+2m的圖象與函數(shù)y=g(x2+1)的圖象恰好有四個不同的交點(diǎn)?若存在,求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①③

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

  • <cite id="xzt32"><rp id="xzt32"><em id="xzt32"></em></rp></cite><mark id="xzt32"><xmp id="xzt32"></xmp></mark>
      <pre id="xzt32"><font id="xzt32"><ol id="xzt32"></ol></font></pre>

            

            

                    3分

      18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

             可建立如圖所示的空間直角坐標(biāo)系

             則       2分

             由  1分

            

            

             又平面BDF,

             平面BDF。       2分

         (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

            

            

             。

             即異面直線CM與FD所成角的大小為   3分

         (III)解:平面ADF,

             平面ADF的法向量為      1分

             設(shè)平面BDF的法向量為

             由

                  1分

            

                1分

             由圖可知二面角A―DF―B的大小為   1分

      19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

            

             解得n=6,n=4(舍去)

             該小組中有6個女生。        5分

         (II)由題意,的取值為0,1,2,3。      1分

            

            

            

                   4分

             的分布列為:

      0

      1

      2

      3

      P

             …………1分

              3分

      20.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

                     3分

                  1分

         (II)由題意,知直線AB的斜率必存在。

             設(shè)直線AB的方程為

             由,

             顯然

            

                   2分

             由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點(diǎn)對稱。

             而    1分

                 

             點(diǎn)O到直線的距離   2分

            

            

            

                     1分

      21.解:(I)

            

                    3分

         (Ⅱ)     1分

            

             上單調(diào)遞增;

             又當(dāng)

             上單調(diào)遞減。      1分

             只能為的單調(diào)遞減區(qū)間,

            

             的最小值為0。

         (III)

            

            

             于是函數(shù)是否存在極值點(diǎn)轉(zhuǎn)化為對方程內(nèi)根的討論。

             而

                  1分

             ①當(dāng)

             此時有且只有一個實(shí)根

                                 

             存在極小值點(diǎn)     1分

             ②當(dāng)

             當(dāng)單調(diào)遞減;

             當(dāng)單調(diào)遞增。

                   1分

             ③當(dāng)

             此時有兩個不等實(shí)根

            

             單調(diào)遞增,

             單調(diào)遞減,

             當(dāng)單調(diào)遞增,

            

             存在極小值點(diǎn)      1分

             綜上所述,對時,

             存在極小值點(diǎn)

             當(dāng)    

             當(dāng)存在極小值點(diǎn)

             存在極大值點(diǎn)      1分

         (注:本小題可用二次方程根的分布求解。)

      22.(I)解:由題意,      1分

                   1

             為首項(xiàng),為公比的等比數(shù)列。

                       1分

                  1分

         (Ⅱ)證明:

            

            

             構(gòu)造輔助函數(shù)

            

             單調(diào)遞增,

            

             令

             則

            

                     4分

         (III)證明:

            

            

            

             時,

            

            

             (當(dāng)且僅當(dāng)n=1時取等號)。      3分

             另一方面,當(dāng)時,

            

            

            

            

            

            

             (當(dāng)且僅當(dāng)時取等號)。

             (當(dāng)且僅當(dāng)時取等號)。

             綜上所述,有      3分

       


      同步練習(xí)冊答案