6.已知點(diǎn)O為坐標(biāo)原點(diǎn).點(diǎn)P滿足.則點(diǎn)P到直線的最短距離為 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)P(x,y)滿足
x-2y+4≤0
x+y≤5
x-1≥0
,設(shè)A(3,0),則|
OP
|cos∠AOP
(O為坐標(biāo)原點(diǎn))的最大值為
 

查看答案和解析>>

已知點(diǎn)P是圓x2+y2=1上一動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
QM
QP
(λ為非零常數(shù))的點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)若存在過點(diǎn)N(
1
2
,0)
的直線l與曲線C相交于A、B兩點(diǎn),且
OA
OB
=0(O為坐標(biāo)原點(diǎn)),求λ的取值范圍.

查看答案和解析>>

已知點(diǎn)P(x,y)滿足
x-4y+3≤0
3x+5y≤25
x-1≥0
,設(shè)A(2,0),則|
OP
|sin∠AOP
(O為坐標(biāo)原點(diǎn))的最大值為
22
5
22
5

查看答案和解析>>

已知點(diǎn)P(x,y)滿足
x-4y+3≤0
3x+5y≤25
x-1≥0
,A(2,0)
,則|
OP
|sin∠AOP
(O為坐標(biāo)原點(diǎn))的最大值為( 。
A、
22
5
B、2
C、1
D、0

查看答案和解析>>

已知點(diǎn)P(x,y)的坐標(biāo)滿足O為坐標(biāo)原點(diǎn),則|PO|的最小值為(  )

A.    B.    C.      D.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①③

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標(biāo)系

       則       2分

       由  1分

      

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

      

      

      

       即異面直線CM與FD所成角的大小為   3分

   (III)解:平面ADF,

       平面ADF的法向量為      1分

       設(shè)平面BDF的法向量為

       由

            1分

      

          1分

       由圖可知二面角A―DF―B的大小為   1分

19.解:(I)設(shè)該小組中有n個(gè)女生,根據(jù)題意,得

      

       解得n=6,n=4(舍去)

       該小組中有6個(gè)女生。        5分

   (II)由題意,的取值為0,1,2,3。      1分

      

      

      

             4分

       的分布列為:

0

1

2

3

P

       …………1分

        3分

20.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

               3分

            1分

   (II)由題意,知直線AB的斜率必存在。

       設(shè)直線AB的方程為

       由,

       顯然

      

             2分

       由雙曲線和ABCD的對(duì)稱性,可知A與C、B與D關(guān)于原點(diǎn)對(duì)稱。

       而    1分

           

       點(diǎn)O到直線的距離   2分

      

      

      

               1分

21.解:(I)

      

              3分

   (Ⅱ)     1分

      

       上單調(diào)遞增;

       又當(dāng)

       上單調(diào)遞減。      1分

       只能為的單調(diào)遞減區(qū)間,

      

       的最小值為0。

   (III)

      

      

       于是函數(shù)是否存在極值點(diǎn)轉(zhuǎn)化為對(duì)方程內(nèi)根的討論。

       而

            1分

       ①當(dāng)

       此時(shí)有且只有一個(gè)實(shí)根

                           

       存在極小值點(diǎn)     1分

       ②當(dāng)

       當(dāng)單調(diào)遞減;

       當(dāng)單調(diào)遞增。

             1分

       ③當(dāng)

       此時(shí)有兩個(gè)不等實(shí)根

      

       單調(diào)遞增,

       單調(diào)遞減,

       當(dāng)單調(diào)遞增,

       ,

       存在極小值點(diǎn)      1分

       綜上所述,對(duì)時(shí),

       存在極小值點(diǎn)

       當(dāng)    

       當(dāng)存在極小值點(diǎn)

       存在極大值點(diǎn)      1分

   (注:本小題可用二次方程根的分布求解。)

22.(I)解:由題意,      1分

             1

       為首項(xiàng),為公比的等比數(shù)列。

                 1分

            1分

   (Ⅱ)證明:

      

      

       構(gòu)造輔助函數(shù)

      

       單調(diào)遞增,

      

       令

       則

      

               4分

   (III)證明:

      

      

      

       時(shí),

      

      

       (當(dāng)且僅當(dāng)n=1時(shí)取等號(hào))。      3分

       另一方面,當(dāng)時(shí),

      

      

      

      

      

      

       (當(dāng)且僅當(dāng)時(shí)取等號(hào))。

       (當(dāng)且僅當(dāng)時(shí)取等號(hào))。

       綜上所述,有      3分

 


同步練習(xí)冊(cè)答案