5.在標準正態(tài)總體N(0.1)中.已知.則標準正態(tài)總體在區(qū)間內(nèi)取值的概率為 查看更多

 

題目列表(包括答案和解析)

13、在標準正態(tài)總體N(0,1)中,已知φ(1.98)=0.9762,則標準正態(tài)總體在區(qū)間(-1.98,1.98)內(nèi)取值的概率為
0.9524

查看答案和解析>>

在標準正態(tài)總體N(0,1)中,已知φ(1.98)=0.9762,則標準正態(tài)總體在區(qū)間(-1.98,1.98)內(nèi)取值的概率為   

查看答案和解析>>

在標準正態(tài)總體N(0,1)中,已知φ(1.98)=0.9762,則標準正態(tài)總體在區(qū)間(-1.98,1.98)內(nèi)取值的概率為______.

查看答案和解析>>

在標準正態(tài)總體N(0,1)中,已知φ(1.98)=0.9762,則標準正態(tài)總體在區(qū)間(-1.98,1.98)內(nèi)取值的概率為________.

查看答案和解析>>

在某校舉行的數(shù)學(xué)競賽中,全體參賽學(xué)生的競賽成績近似服從正態(tài)分布N(70,100).已知成績在90分以上(含90分)的學(xué)生有12名.

(1)試問此次參賽學(xué)生總數(shù)約為多少人?

(2)若該校計劃獎勵競賽成績排在前50名的學(xué)生,試問設(shè)獎的分數(shù)線約為多少分?

可共查閱的(部分)標準正態(tài)分布表Φ(x0)=P(x<x0)

x0

0

1

2

3

4

1.2

0.884 9

0.886 9

0.888

0.890 7

0.892 5

1.3

0.903 2

904 9

. 0.906 6

0.908 2

0.909 9

1.4

0.919 2

0.920 7

0.922 2

0.923 6

0.925 1

1.9

0.971 3

0.971 9

0.972 6

0.973 2

0.973 8

2.0

0.9772

0.9788

0.9783

0.9788

0.9793

2.1

0.982 1

0.982 6

0.983 0

0.983 4

0.9838

x0

5

6

7

8

9

1.2

0.894 4

0.896 2

0.898 0

0.899 7

0.901 5

1.3

0.911 5

0.913 1

0.914 7

0.916 2

0.917 7

1.4

0.926 5

0.927 8

0.929 2

0.930 6

0.931 9

1.9

0.974 4

0.975 0

0.975 6

0.976 2

0.976 7

2.0

0.979 8

0.980 3

0.980 8

0.981 2

0.981 7

2.1

0.984 2

0.984 6

0.985 0

0.985 4

0.985 7

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①③

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

<nobr id="gkcy7"><noscript id="gkcy7"><pre id="gkcy7"></pre></noscript></nobr><dfn id="gkcy7"><strike id="gkcy7"></strike></dfn><strong id="gkcy7"><progress id="gkcy7"><legend id="gkcy7"></legend></progress></strong>

      

      

              3分

18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

       可建立如圖所示的空間直角坐標系

       則       2分

       由  1分

      

      

       又平面BDF,

       平面BDF。       2分

   (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

      

      

      

       即異面直線CM與FD所成角的大小為   3分

   (III)解:平面ADF,

       平面ADF的法向量為      1分

       設(shè)平面BDF的法向量為

       由

            1分

      

          1分

       由圖可知二面角A―DF―B的大小為   1分

19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

      

       解得n=6,n=4(舍去)

       該小組中有6個女生。        5分

   (II)由題意,的取值為0,1,2,3。      1分

      

      

      

             4分

       的分布列為:

0

1

2

3

P

       …………1分

        3分

20.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

               3分

            1分

   (II)由題意,知直線AB的斜率必存在。

       設(shè)直線AB的方程為

       由,

       顯然

      

             2分

       由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

       而    1分

           

       點O到直線的距離   2分

      

      

      

               1分

21.解:(I)

      

              3分

   (Ⅱ)     1分

      

       上單調(diào)遞增;

       又當(dāng)

       上單調(diào)遞減。      1分

       只能為的單調(diào)遞減區(qū)間,

      

       的最小值為0。

   (III)

      

      

       于是函數(shù)是否存在極值點轉(zhuǎn)化為對方程內(nèi)根的討論。

       而

            1分

       ①當(dāng)

       此時有且只有一個實根

                           

       存在極小值點     1分

       ②當(dāng)

       當(dāng)單調(diào)遞減;

       當(dāng)單調(diào)遞增。

             1分

       ③當(dāng)

       此時有兩個不等實根

      

       單調(diào)遞增,

       單調(diào)遞減,

       當(dāng)單調(diào)遞增,

       ,

       存在極小值點      1分

       綜上所述,對時,

       存在極小值點

       當(dāng)    

       當(dāng)存在極小值點

       存在極大值點      1分

   (注:本小題可用二次方程根的分布求解。)

22.(I)解:由題意,      1分

             1

       為首項,為公比的等比數(shù)列。

                 1分

            1分

   (Ⅱ)證明:

      

      

       構(gòu)造輔助函數(shù)

      

       單調(diào)遞增,

      

       令

       則

      

               4分

   (III)證明:

      

      

      

       時,

      

      

       (當(dāng)且僅當(dāng)n=1時取等號)。      3分

       另一方面,當(dāng)時,

      

      

      

      

      

      

       (當(dāng)且僅當(dāng)時取等號)。

       (當(dāng)且僅當(dāng)時取等號)。

       綜上所述,有      3分

 


同步練習(xí)冊答案