題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設,證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
一、A;A;C;D;A;A; C;C;B;C;C;A
二、13、或; 14、80; 15、-2;16、 ;
17、解:⑴
………………………………………3分
時,由得函數(shù)的遞增區(qū)間為
時,由得函數(shù)的遞增區(qū)間為…………………………………………5分
⑵
……………………………………………7分
時,得:(舍)
時,得
綜上,……………………………………………………10分
18、解:用分別表示三列火車正點到達的事件,則
⑴恰有兩列火車正點到達的概率記為,則
……………………………………………4分
⑵用表示誤點的列數(shù),則至少兩列誤點可表示為:
………………………………………………………6分
19.解:方法一:(I)證明:,
又平面平面ABCD,平面平面ABCD=BC,
平面ABCD ……2分
在梯形ABCD中,可得
,即
在平面ABCD內(nèi)的射影為AO, ……4分
(II)解:,且平面平面ABCD
平面PBC, 平面PBC,
為二面角P―DC―B的平面角 ……6分
是等邊三角形即二面角P―DC―B的大小為 …8分
(III)證明:取PB的中點N,連結(jié)CN, ①
,且平面平面ABCD,平面PBC ……10分
平面PAB 平面平面PAB ②
由①、②知平面PAB…………..10分
連結(jié)DM、MN,則由MN//AB//CD,,
得四邊形MNCD為平行四邊形,,平面PAB.
平面PAD 平面平面PAB ……………….12分
方法二:取BC的中點O,因為是等邊三角形,
由側(cè)面底面ABCD 得底面ABCD ……1分
以BC中點O為原點,以BC所在直線為x軸,過點O與AB平行的直線為y軸,建立如圖所示的空間直角坐標系O―xyz……2分
(I)證明:,則在直角梯形中,
在等邊三角形PBC中,……3分
,即…4分
(II)解:取PC中點N,則
平面PDC,顯然,且平面ABCD
所夾角等于所求二面角的平面角 ……6分
,二面角的大小為 ……8分
(III)證明:取PA的中點M,連結(jié)DM,則M的坐標為
又 ……10分
,
即
平面PAB,平面平面PAB ……12分
20.解:Ⅰ由已知得: ……………………………………2分
當解得:…………………………………………3分
當時,,帶入上式得:
配方得:
所以……………………………………………5分
所以……………………………………7分
Ⅱ
……………………………………………………………………10分
………………………12分
22解:⑴
則,所以……………………………3分
;由此可知
當時,函數(shù)單調(diào)遞增
當時,函數(shù)單調(diào)遞減,
當時,函數(shù)取極大值……………………………………………………………6分
⑵在區(qū)間上是單調(diào)減函數(shù),
所以在區(qū)間上恒成立,有二次函數(shù)的圖像可知:
;令……………………………………………9分
當直線經(jīng)過交點時,取得最小值…………………………………13分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com