如圖,在矩形ABCD中,已知邊AB、BC的長恰為關(guān)于x的一元二次方程x
2-(m-2)x+3m=0的兩根.動點P、Q分別從點B、C出發(fā),其中,點P以每秒a個單位的速度,沿B→C的路線向點C運動;點Q以每秒3個單位的速度,沿C→D的路線向點D運動.若P、Q兩點同時出發(fā),運動時間為t(s)(t>0),且當t=2時,P、Q兩點恰好同時到達目的地.
(1)求m、a的值;
(2)是否存在這樣的t,使得△APQ為直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
(3)若在動點P、Q從起點出發(fā)的同時,另有M、N兩點同時從點A出發(fā),其中,點M以每秒2個單位的速度,沿A→D的路線向點D運動;點N以每秒1個單位的速度,沿A→B的路線向點B運動.問:是否存在這樣的t,使得四邊形PQMN為平行四邊形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.若將“平行四邊形”改為“梯形”,結(jié)果又如何?