22.以矩形AOBC的頂點O為原點建立如圖直角坐標(biāo)系.頂點C的坐標(biāo)是(4.3).P.Q分別是邊OB.BC上的動點.P從O出發(fā).沿OB方向移動.同時Q從B出發(fā)沿BC方向移動.在移動過程中.始終保持∠APQ=900. 查看更多

 

題目列表(包括答案和解析)

如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標(biāo);
(2)設(shè)頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點M、N,使得四邊形MNFE的周長最小?如果存在,求出周長的最小值;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

10、如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系、已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處,若在y軸上存在點P,且滿足FE=FP,則P點坐標(biāo)為
(0,4),(0,0)

查看答案和解析>>

如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)精英家教網(wǎng)系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標(biāo);
(2)設(shè)頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4cm,OC=3cm,D為OA上一動點,點D以1cm/s的速度從O點出發(fā)向精英家教網(wǎng)A點運動,E為AB上一動點,點E以1cm/s的速度從A點出發(fā)向點B運動.
(1)試寫出多邊形ODEBC的面積S(cm2)與運動時間t(s)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,當(dāng)多邊形ODEBC的面積最小時,在坐標(biāo)軸上是否存在點P,使得△PDE為等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)在某一時刻將△BED沿著BD翻折,使得點E恰好落在BC邊的點F處.求出此時時間t的值.若此時在x軸上存在一點M,在y軸上存在一點N,使得四邊形MNFE的周長最小,試求出此時點M,點N的坐標(biāo).

查看答案和解析>>

(2012•豐臺區(qū)一模)將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).
小明的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).
(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖;
(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標(biāo)系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、N在x軸上(點M在N的左邊).如果點D的坐標(biāo)為(5,8),直線PM的解析式為y=kx+b,則所有滿足條件的k的值為
8
5
,
4
3
或2
8
5
,
4
3
或2

查看答案和解析>>


同步練習(xí)冊答案