題目列表(包括答案和解析)
(本題滿分14分)
已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,若,且成等比數(shù)列.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記的前項(xiàng)和為,求.
(本題滿分14分)
已知正項(xiàng)等差數(shù)列的前項(xiàng)和為,若,且成等比數(shù)列.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)記的前項(xiàng)和為,求.
(本題滿分14分)
已知函數(shù),是方程f(x)=0的兩個(gè)根,是f(x)的導(dǎo)數(shù).
設(shè),(n=1,2,……)
(1)求的值;
(2)證明:對(duì)任意的正整數(shù)n,都有>a;
(3)記(n=1,2,……),求數(shù)列{bn}的前n項(xiàng)和Sn。
(本題滿分14分)已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖象上,且過(guò)點(diǎn)的切線的斜率為.
(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和;
(3)設(shè),等差數(shù)列的任一項(xiàng),其中是中的最小數(shù),,求的通項(xiàng)公式.
(本題滿分14分)已知數(shù)列是首項(xiàng)為1公差為正的等差數(shù)列,數(shù)列是首項(xiàng)為1的等比數(shù)列,設(shè),且數(shù)列的前三項(xiàng)依次為1,4,12,
(1)求數(shù)列、的通項(xiàng)公式;
(2)若等差數(shù)列的前n項(xiàng)和為Sn,求數(shù)列的前項(xiàng)的和Tn.
一.選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
C
B
A
C
D
D
D
A
B
A
A
二.填空題
13.4; 14. ; 15.15; 16.,可以填寫任一實(shí)數(shù).
三.解答題
17. (Ⅰ)列表:
2
6
10
14
0
1
3
1
1
描點(diǎn)作圖,得圖象如下.
6分
(Ⅱ)
所以,當(dāng),即時(shí),函數(shù)取得最小值. 12分
18.由圖可知,參加活動(dòng)1次、2次和3次的學(xué)生人數(shù)分別為5、25和20.
(I)該班學(xué)生參加活動(dòng)的人均次數(shù)為=. 6分
(II)從該班中任選兩名學(xué)生,他們參加活動(dòng)次數(shù)恰好相等的概率為. 12分
19.(Ⅰ)∵AD=2AB=2,E是AD的中點(diǎn),
∴△BAE,△CDDE是等腰直角三角形,
易知,∠BEC=90°,即BE⊥EC
又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,
∴BE⊥面D′EC,又CD′面D′EC,∴BE⊥CD′. 6分
(Ⅱ)法一:設(shè)M是線段EC的中點(diǎn),過(guò)M作MF⊥BC
垂足為F,連接D′M,D′F,則D′M⊥EC
∵平面D′EC⊥平面BEC,
∴D′M⊥平面EBC,
∴MF是D′F在平面BEC上的射影,
由三垂線定理得:D′F⊥BC
∴∠D′FM是二面D′―BC―E的平面角.
在Rt△D′MF中,
∴,
即二面角D′―BC―E的正切值為. 12分
法二:如圖,以EB,EC為x軸,y軸,過(guò)E垂直于平面BEC的射線為z軸,建立空間直角坐標(biāo)系,
則
設(shè)平面BEC的法向量為;平面D′BC的法向量為
由
取
∴
∴二面角D′―BC―E的正切值為. 12分
20.(I),
(II)由(I)知
21(Ⅰ)設(shè)橢圓C的方程為,則由題意知b = 1.
∴橢圓C的方程為 …………………………………………………6分
(Ⅱ)易知直線的斜率為,從而直線的斜率為1.設(shè)直線的方程為,代如橢圓的方程,并整理可得.設(shè),則,.于是
解之得或.
當(dāng)時(shí),點(diǎn)即為直線與橢圓的交點(diǎn),不合題意.當(dāng)時(shí),經(jīng)檢驗(yàn)知和橢圓相交,符合題意.
所以,當(dāng)且僅當(dāng)直線的方程為時(shí), 點(diǎn)是的垂心. 12分
22.(Ⅰ)對(duì)一切有
于是,
() 5分
(Ⅱ)由及
兩式相減,得:
∴. 10分
(Ⅲ) 由于,
所以, 14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com