題目列表(包括答案和解析)
按照新課程的要求, 高中學生在每學期都要至少參加一次社會實踐活動(以下簡稱活動). 該校高2010級一班50名學生在上學期參加活動的次數(shù)統(tǒng)計如圖所示.
(I)求該班學生參加活動的人均次數(shù);(II)從該班中任意選兩名學生,求他們參加活動次數(shù)恰好相等的概率.
(III)從該班中任選兩名學生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學期望.
按照新課程的要求, 高中學生在每學期都要至少參加一次社會實踐活動(以下簡稱活動). 該校高2010級一班50名學生在上學期參加活動的次數(shù)統(tǒng)計如圖所示.
(I)求該班學生參加活動的人均次數(shù);(II)從該班中任意選兩名學生,求他們參加活動次數(shù)恰好相等的概率.
(III)從該班中任選兩名學生,用表示這兩人參加活動次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學期望.
. | x |
一.選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
C
B
A
C
D
D
D
A
B
A
A
二.填空題
13.4; 14. ; 15.15; 16.,可以填寫任一實數(shù).
三.解答題
17. (Ⅰ)列表:
2
6
10
14
0
1
3
1
1
描點作圖,得圖象如下.
6分
(Ⅱ)
所以,當,即時,函數(shù)取得最小值. 12分
18.由圖可知,參加活動1次、2次和3次的學生人數(shù)分別為5、25和20.
(I)該班學生參加活動的人均次數(shù)為=. 6分
(II)從該班中任選兩名學生,他們參加活動次數(shù)恰好相等的概率為. 12分
19.(Ⅰ)∵AD=2AB=2,E是AD的中點,
∴△BAE,△CDDE是等腰直角三角形,
易知,∠BEC=90°,即BE⊥EC
又∵平面D′EC⊥平面BEC,面D′EC∩面BEC=EC,
∴BE⊥面D′EC,又CD′面D′EC,∴BE⊥CD′. 6分
(Ⅱ)法一:設(shè)M是線段EC的中點,過M作MF⊥BC
垂足為F,連接D′M,D′F,則D′M⊥EC
∵平面D′EC⊥平面BEC,
∴D′M⊥平面EBC,
∴MF是D′F在平面BEC上的射影,
由三垂線定理得:D′F⊥BC
∴∠D′FM是二面D′―BC―E的平面角.
在Rt△D′MF中,
∴,
即二面角D′―BC―E的正切值為. 12分
法二:如圖,以EB,EC為x軸,y軸,過E垂直于平面BEC的射線為z軸,建立空間直角坐標系,
則
設(shè)平面BEC的法向量為;平面D′BC的法向量為
由
取
∴
∴二面角D′―BC―E的正切值為. 12分
20.(I),
(II)由(I)知
21(Ⅰ)設(shè)橢圓C的方程為,則由題意知b = 1.
∴橢圓C的方程為 …………………………………………………6分
(Ⅱ)易知直線的斜率為,從而直線的斜率為1.設(shè)直線的方程為,代如橢圓的方程,并整理可得.設(shè),則,.于是
解之得或.
當時,點即為直線與橢圓的交點,不合題意.當時,經(jīng)檢驗知和橢圓相交,符合題意.
所以,當且僅當直線的方程為時, 點是的垂心. 12分
22.(Ⅰ)對一切有
于是,
() 5分
(Ⅱ)由及
兩式相減,得:
∴. 10分
(Ⅲ) 由于,
所以, 14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com