已知曲線C上任意一點(diǎn)M到點(diǎn)F(0.1)的距離比它到直線的距離小1. (1)求曲線C的方程, 查看更多

 

題目列表(包括答案和解析)

已知曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線l:y=-2的距離小1.
(1)求曲線C的方程;
(2)過點(diǎn)P(2,2)的直線m與曲線C交于A,B兩點(diǎn),設(shè)
AP
PB

①當(dāng)λ=1時(shí),求直線m的方程;
②當(dāng)△AOB的面積為4
2
時(shí)(O為坐標(biāo)原點(diǎn)),求λ的值.

查看答案和解析>>

已知曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點(diǎn)P(2,2)的直線m與曲線C交于A,B兩點(diǎn),設(shè)
AP
PB

①當(dāng)λ=1時(shí),求直線m的方程;
②當(dāng)△AOB的面積為4
2
時(shí)(O為坐標(biāo)原點(diǎn)),求直線m的斜率.

查看答案和解析>>

已知曲線C上任意一點(diǎn)M到點(diǎn)F(1,0)的距離比它到直線l:x=-2的距離小1.
(1)求曲線C的方程;
(2)斜率為1的直線l過點(diǎn)F,且與曲線C交與A、B兩點(diǎn),求線段AB的長.

查看答案和解析>>

已知曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線l:y=-2的距離小1.
(1)求曲線C的方程;
(2)過點(diǎn)P(2,2)的直線與曲線C交于A、B兩點(diǎn),設(shè)
AP
PB
.當(dāng)△AOB的面積為4
2
時(shí)(O為坐標(biāo)原點(diǎn)),求λ的值.

查看答案和解析>>

已知曲線C上任意一點(diǎn)M到點(diǎn)F(1,0)的距離比它到直線x=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)直線l:y=-x+b與曲線C相交于A,B兩點(diǎn),P(1,2),設(shè)直線PA、PB的斜率分別為k1,k2,求證:k1+k2為定值.

查看答案和解析>>

  • <sup id="myhur"><samp id="myhur"><s id="myhur"></s></samp></sup>

        <form id="myhur"><xmp id="myhur"></xmp></form>
        1. 19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

          ,

          則在四邊形BB1D1D中(如圖),

          得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

          即D1O1⊥B1O

             (2)解法一:連接OD1,△AB1C,△AD1C均為等腰

          三角形,

          且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

          顯然:∠D1OB1為所求二面角D1―AC―B1的平面角,

          由:OD1=OB1=B1D=2知

          解法二:由ABCD―A1B1C1D1為四棱柱,得面BB1D1D⊥面ABCD

          所以O(shè)1D1在平面ABCD上的射影為BD,由四邊形ABCD為正方形,AC⊥BD,由三垂線定理知,O1D1⊥AC。可得D1O1⊥平面AB1C。

          又因?yàn)锽1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

          20.解:(1)曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線的距離小1,

          可得|MF|等于M到y(tǒng)=-1的距離,由拋物線的定義知,M點(diǎn)的軌跡為

             (2)當(dāng)直線的斜率不存在時(shí),它與曲線C只有一個(gè)交點(diǎn),不合題意,

              當(dāng)直線m與x軸不垂直時(shí),設(shè)直線m的方程為

             代入    ①

              恒成立,

              設(shè)交點(diǎn)A,B的坐標(biāo)分別為

          ∴直線m與曲線C恒有兩個(gè)不同交點(diǎn)。

              ②        ③

          故直線m的方程為

          21.解:(1)由已知得

             

             (2)

             

             

             (3)

             

           


          同步練習(xí)冊答案