(2)若函數(shù)上單調遞增.求實數(shù)m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

函數(shù)f(x)=x-
alnxx
,其中a為常數(shù).
(1)證明:對任意a∈R,函數(shù)y=f(x)圖象恒過定點;
(2)當a=1時,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求實數(shù)b的取值范圍;
(3)若對任意a∈[m,0)時,函數(shù)y=f(x)在定義域上恒單調遞增,求m的最小值.

查看答案和解析>>

函數(shù)f(x)=x-
alnx
x
,其中a為常數(shù).
(1)證明:對任意a∈R,函數(shù)y=f(x)圖象恒過定點;
(2)當a=1時,不等式f(x)+2b≤0在x∈(0,+∞)上有解,求實數(shù)b的取值范圍;
(3)若對任意a∈[m,0)時,函數(shù)y=f(x)在定義域上恒單調遞增,求m的最小值.

查看答案和解析>>

設函數(shù)f(x)=
1
4
x4+bx2+cx+d,當x=t1時,f(x)有極小值.
(1)若b=-6時,函數(shù)f(x)有極大值,求實數(shù)c的取值范圍;
(2)在(1)的條件下,若存在實數(shù)c,使函數(shù)f(x)在閉區(qū)間[m-2,m+2]上單調遞增,求m的取值范圍;
(3)若函數(shù)f(x)只有一個極值點,且存在t2∈(t1,t1+1),使f′(t2)=0,證明:函數(shù)g(x)=f(x)-
1
2
x2+t1x在區(qū)間(t1,t2)內最多有一個零點.

查看答案和解析>>

設函數(shù)f(x)=
1
3
x3-
1
2
ax2+(a2-3)x+1

(1)若函數(shù)f(x)在(-∞,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的單調遞減區(qū)間為(m,n),且{x|x<0}∩{m,n}≠∅.求實數(shù)a的取值范圍.

查看答案和解析>>

設函數(shù)f(x)=
a
b
定義在R上,其中
a
=(cosx,sin2x),
b
=(2cosx,
3
)

(1)求函數(shù)y=f(x)的單調遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向右平移
π
6
單位后,再將得到的圖象上各點的橫坐標延長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,若g(x)<m+2在x∈[O,2π]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

  1. <address id="hskkj"></address>
    <div id="hskkj"></div>
  2. 19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

    則在四邊形BB1D1D中(如圖),

    得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

    即D1O1⊥B1O

       (2)解法一:連接OD1,△AB1C,△AD1C均為等腰

    三角形,

    且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

    顯然:∠D1OB1為所求二面角D1―AC―B1的平面角,

    由:OD1=OB1=B1D=2知

    解法二:由ABCD―A1B1C1D1為四棱柱,得面BB1D1D⊥面ABCD

    所以O1D1在平面ABCD上的射影為BD,由四邊形ABCD為正方形,AC⊥BD,由三垂線定理知,O1D1⊥AC?傻肈1O1⊥平面AB1C

    又因為B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

    20.解:(1)曲線C上任意一點M到點F(0,1)的距離比它到直線的距離小1,

    可得|MF|等于M到y(tǒng)=-1的距離,由拋物線的定義知,M點的軌跡為

       (2)當直線的斜率不存在時,它與曲線C只有一個交點,不合題意,

        當直線m與x軸不垂直時,設直線m的方程為

       代入    ①

        恒成立,

        設交點A,B的坐標分別為

    ∴直線m與曲線C恒有兩個不同交點。

        ②        ③

    故直線m的方程為

    21.解:(1)由已知得

       

       (2)

       

       

       (3)

       

     


    同步練習冊答案