12.某校高三數(shù)學(xué)考試中.對90分以上的成績進行統(tǒng)計.頻率分布如圖所示.130―140分數(shù)段的人數(shù)為60人.則90―110分數(shù)段的人數(shù)為 . 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)某校高三數(shù)學(xué)考試中,對90分以上(含90分)的成績進行統(tǒng)計,頻率分布如圖所示,130~140分數(shù)段的人數(shù)為40人,則90~110分數(shù)段的人數(shù)為
 

查看答案和解析>>

某校高三數(shù)學(xué)考試中,對90分以上(含90分)的成績進行統(tǒng)計,頻率分布如圖所示,130~140分數(shù)段的人數(shù)為40人,則90~110分數(shù)段的人數(shù)為   

查看答案和解析>>

某校高三數(shù)學(xué)考試中,對90分以上(含90分)的成績進行統(tǒng)計,頻率分布如圖所示,130~140分數(shù)段的人數(shù)為40人,則90~110分數(shù)段的人數(shù)為________.

查看答案和解析>>

某校高三4班有50名學(xué)生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學(xué)生進行編號(1~50號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

編號

性別

投籃成績

2

90

7

60

12

75

17

80

22

83

27

85

32

75

37

80

42

70

47

60

甲抽取的樣本數(shù)據(jù)

編號

性別

投籃成績

1

95

8

85

10

85

20

70

23

70

28

80

33

60

35

65

43

70

48

60

乙抽取的樣本數(shù)據(jù)

(Ⅰ)觀察抽取的樣本數(shù)據(jù),若從男同學(xué)中抽取兩名,求兩名男同學(xué)中恰有一名非優(yōu)秀的概率.

(Ⅱ)請你根據(jù)抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關(guān)?

 

優(yōu)秀

非優(yōu)秀

合計

 

 

 

 

 

 

合計

 

 

10

(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.

下面的臨界值表供參考:

0.15

0.10

0.05

0.010

0.005

0.001

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式:,其中

 

查看答案和解析>>

某校高三4班有50名學(xué)生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學(xué)生進行編號(1~50號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃考試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

編號
性別
投籃成績
2

90
7

60
12

75
17

80
22

83
27

85
32

75
37

80
42

70
47

60
甲抽取的樣本數(shù)據(jù)
編號
性別
投籃成績
1

95
8

85
10

85
20

70
23

70
28

80
33

60
35

65
43

70
48

60
乙抽取的樣本數(shù)據(jù)
(Ⅰ)觀察抽取的樣本數(shù)據(jù),若從男同學(xué)中抽取兩名,求兩名男同學(xué)中恰有一名非優(yōu)秀的概率.
(Ⅱ)請你根據(jù)抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關(guān)?
 
優(yōu)秀
非優(yōu)秀
合計

 
 
 

 
 
 
合計
 
 
10
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

    <fieldset id="fncwf"></fieldset>

        19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

        ,

        則在四邊形BB1D1D中(如圖),

        得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

        即D1O1⊥B1O

           (2)解法一:連接OD1,△AB1C,△AD1C均為等腰

        三角形,

        且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

        顯然:∠D1OB1為所求二面角D1―AC―B1的平面角,

        由:OD1=OB1=B1D=2知

        解法二:由ABCD―A1B1C1D1為四棱柱,得面BB1D1D⊥面ABCD

        所以O(shè)1D1在平面ABCD上的射影為BD,由四邊形ABCD為正方形,AC⊥BD,由三垂線定理知,O1D1⊥AC?傻肈1O1⊥平面AB1C。

        又因為B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

        20.解:(1)曲線C上任意一點M到點F(0,1)的距離比它到直線的距離小1,

        可得|MF|等于M到y(tǒng)=-1的距離,由拋物線的定義知,M點的軌跡為

           (2)當直線的斜率不存在時,它與曲線C只有一個交點,不合題意,

            當直線m與x軸不垂直時,設(shè)直線m的方程為

           代入    ①

            恒成立,

            設(shè)交點A,B的坐標分別為

        ∴直線m與曲線C恒有兩個不同交點。

            ②        ③

        故直線m的方程為

        21.解:(1)由已知得

           

           (2)

           

           

           (3)

           

         


        同步練習(xí)冊答案