A. B.1 C. D. 查看更多

 

題目列表(包括答案和解析)

(    )

A.             B.1                C.             D.

 

查看答案和解析>>

(    )

A. B.1 C. D.

查看答案和解析>>

                                                  (    )

A.             B. 1           C.                D.2

查看答案和解析>>

                                                   (    )

A.             B. 1           C.                D.2

 

查看答案和解析>>

,則=(   )

A.              B.1               C.              D.2

 

查看答案和解析>>

<pre id="c0aqo"><dfn id="c0aqo"></dfn></pre>
  • <blockquote id="c0aqo"><tbody id="c0aqo"></tbody></blockquote>
    <option id="c0aqo"><li id="c0aqo"></li></option>
  • <center id="c0aqo"></center><ul id="c0aqo"></ul>
      • 19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

        ,

        則在四邊形BB1D1D中(如圖),

        得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

        即D1O1⊥B1O

           (2)解法一:連接OD1,△AB1C,△AD1C均為等腰

        三角形,

        且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

        顯然:∠D1OB1為所求二面角D1―AC―B1的平面角,

        由:OD1=OB1=B1D=2知

        解法二:由ABCD―A1B1C1D1為四棱柱,得面BB1D1D⊥面ABCD

        所以O(shè)1D1在平面ABCD上的射影為BD,由四邊形ABCD為正方形,AC⊥BD,由三垂線定理知,O1D1⊥AC。可得D1O1⊥平面AB1C。

        又因?yàn)锽1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

        20.解:(1)曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線的距離小1,

        可得|MF|等于M到y(tǒng)=-1的距離,由拋物線的定義知,M點(diǎn)的軌跡為

           (2)當(dāng)直線的斜率不存在時(shí),它與曲線C只有一個(gè)交點(diǎn),不合題意,

            當(dāng)直線m與x軸不垂直時(shí),設(shè)直線m的方程為

           代入    ①

            恒成立,

            設(shè)交點(diǎn)A,B的坐標(biāo)分別為

        ∴直線m與曲線C恒有兩個(gè)不同交點(diǎn)。

            ②        ③

        故直線m的方程為

        21.解:(1)由已知得

           

           (2)

           

           

           (3)

           

         


        同步練習(xí)冊(cè)答案
        <center id="c0aqo"></center>