23. 已知y=m2+m+4.若m為整數(shù).在使得y為完全平方數(shù)的所有m的值中.設(shè)m的最大值為a.最小值為b.次小值為c.(一個數(shù)如果是另一個整數(shù)的完全平方.那么我們就稱這個數(shù)為完全平方數(shù).) (1)求a.b.c的值, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知:如圖,拋物線與y軸交于點C(0,),  與x軸交于點A、 B,點A的坐標(biāo)為(2,0).

(1)求該拋物線的解析式;

(2)點P是線段AB上的動點,過點P作PD∥BC,交AC于點D,連接CP.當(dāng)△CPD的面積最大時,求點P的坐標(biāo);

(3)若平行于x軸的動直線與該拋物線交于點Q,與直線BC交于點F,點M 的坐標(biāo)為(,0).問:是否存在這樣的直線,使得△OMF是等腰三角形?若存   在,請求出點Q的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分14分)

已知:如圖,拋物線與y軸交于點C(0,),  與x軸交于點A、 B,點A的坐標(biāo)為(2,0).

(1)求該拋物線的解析式;

(2)點P是線段AB上的動點,過點P作PD∥BC,交AC于點D,連接CP.當(dāng)△CPD的面積最大時,求點P的坐標(biāo);

(3)若平行于x軸的動直線與該拋物線交于點Q,與直線BC交于點F,點M 的坐標(biāo)為(,0).問:是否存在這樣的直線,使得△OMF是等腰三角形?若存   在,請求出點Q的坐標(biāo);若不存在,請說明理由.

 

查看答案和解析>>

(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

經(jīng)過點(0,4).

(1)       求m的值;

(2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

① 試求平移后的拋物線的解析式;

② 試問在平移后的拋物線上是否存在點P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

 

查看答案和解析>>

(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))

經(jīng)過點(0,4).

(1)       求m的值;

(2)       將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.

①  試求平移后的拋物線的解析式;

②  試問在平移后的拋物線上是否存在點P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

 

查看答案和解析>>

(2011廣西崇左,25,14分)(本小題滿分14分)已知拋物線y=x2+4x+mm為常數(shù))
經(jīng)過點(0,4).
(1)      求m的值;
(2)      將該拋物線先向右、再向下平移得到另一條拋物線.已知平移后的拋物線滿足下述兩個條件:它的對稱軸(設(shè)為直線l2)與平移前的拋物線的對稱軸(設(shè)為直線l1)關(guān)于y軸對稱;它所對應(yīng)的函數(shù)的最小值為-8.
① 試求平移后的拋物線的解析式;
② 試問在平移后的拋物線上是否存在點P,使得以3為半徑的圓P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標(biāo),并求出直線l2被圓P所截得的弦AB的長度;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案