的條件下.當取得最大值時.過點作的垂線.垂足為.連接.把沿直線折疊.點的對應(yīng)點為.請直接寫出點坐標.并判斷點是否在該拋物線上. 查看更多

 

題目列表(包括答案和解析)

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(-1,0),B精英家教網(wǎng)(3,0)其頂點為D,連接BD,點P是線段BD上一個動點(不與B,D重合),過點P作y軸的垂線,垂足為E連接BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果點P的坐標為(x,y),△PBE的面積為S,求S與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當S取得最大值時,過點P作x軸的垂線,垂足為F,連接EF在這條拋物線上是否存在一點Q,使得直線EF為線段PQ的垂直平分線?若存在,請求出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(-1,0)、B(3,0)兩點,拋物線與y軸交點為C,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P',請直接寫出P'點坐標,并判斷點P'是否在該拋物線上.

查看答案和解析>>

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(3,0),C(0,3)三點,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PE精英家教網(wǎng)F沿直線EF折疊,點P的對應(yīng)點為P′,請直接寫出P′點坐標,并判斷點P′是否在該拋物線上.

查看答案和解析>>

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(3,0),C(0,3)三點,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P′,請直接寫出P′點坐標,并判斷點P′是否在該拋物線上.

查看答案和解析>>

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(3,0),C(0,3)三點,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應(yīng)點為P′,請直接寫出P′點坐標,并判斷點P′是否在該拋物線上.

查看答案和解析>>


同步練習冊答案