(2)如果點的坐標為.的面積為.求與的函數(shù)關(guān)系式.寫出自變量的取值范圍.并求出的最大值, 查看更多

 

題目列表(包括答案和解析)

如圖,在直角坐標系中,O為坐標原點,矩形ABCD的邊AD與x軸的正半軸重合,另三邊都在第四象限內(nèi),已知點A(1,0),AB=2,AD=3,點E為OD的中點,以AD為直徑作⊙M,經(jīng)過A、D兩點的拋物線y=ax2+bx+c的精英家教網(wǎng)頂點為P.
(1)求經(jīng)過C、E兩點的直線的解析式;
(2)如果點P同時在⊙M和矩形ABCD內(nèi)部,求a的取值范圍;
(3)過點B作⊙M的切線交邊CD于F點,當(dāng)PF∥AD時,判斷直線CE與y軸的交點是否在拋物線上,并說明理由.

查看答案和解析>>

如圖,在直角坐標系中,是原點,三點的坐標分別,四邊形是梯形,點同時從原點出發(fā),分別作勻速運動,其中點沿向終點運動,速度為每秒個單位,點沿向終點運動,當(dāng)這兩點有一點到達自己的終點時,另一點也停止運動.

(1)求直線的解析式.

(2)設(shè)從出發(fā)起,運動了秒.如果點的速度為每秒個單位,試寫出點的坐標,并寫出此時 的取值范圍.

(3)設(shè)從出發(fā)起,運動了秒.當(dāng)兩點運動的路程之和恰好等于梯形的周長的一半,這時,直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.

【解析】(1)根據(jù)待定系數(shù)法就可以求出直線OC的解析式(2)本題應(yīng)分Q在OC上,和在CB上兩種情況進行討論.即0≤t≤5和5<t≤10兩種情況(3)P、Q兩點運動的路程之和可以用t表示出來,梯形OABC的周長就可以求得.當(dāng)P、Q兩點運動的路程之和恰好等于梯形OABC的周長的一半,就可以得到一個關(guān)于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進行檢驗

 

查看答案和解析>>

如圖,在直角坐標系中,是原點,三點的坐標分別,四邊形是梯形,點同時從原點出發(fā),分別作勻速運動,其中點沿向終點運動,速度為每秒個單位,點沿向終點運動,當(dāng)這兩點有一點到達自己的終點時,另一點也停止運動.

(1)求直線的解析式.

(2)設(shè)從出發(fā)起,運動了秒.如果點的速度為每秒個單位,試寫出點的坐標,并寫出此時 的取值范圍.

(3)設(shè)從出發(fā)起,運動了秒.當(dāng),兩點運動的路程之和恰好等于梯形的周長的一半,這時,直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.

【解析】(1)根據(jù)待定系數(shù)法就可以求出直線OC的解析式(2)本題應(yīng)分Q在OC上,和在CB上兩種情況進行討論.即0≤t≤5和5<t≤10兩種情況(3)P、Q兩點運動的路程之和可以用t表示出來,梯形OABC的周長就可以求得.當(dāng)P、Q兩點運動的路程之和恰好等于梯形OABC的周長的一半,就可以得到一個關(guān)于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進行檢驗

 

查看答案和解析>>

如圖8,拋物線軸的交點為,與軸的交點為,頂點為,將拋物線繞點旋轉(zhuǎn),得到新的拋物線,它的頂點為.

(1)求拋物線的解析式;

(2)設(shè)拋物線軸的另一個交點為,點是線段上一個動點(不與重合),過點軸的垂線,垂足為,連接.如果點的坐標為,的面積為S,求S與的函數(shù)關(guān)系式,寫出自變量的取值范圍,并求出S的最大值;

(3)設(shè)拋物的對稱軸與軸的交點為,以為圓心,兩點間的距離為直徑作⊙,試判斷直線與⊙的位置關(guān)系,并說明理由.

查看答案和解析>>

在數(shù)學(xué)學(xué)習(xí)中,及時對知識進行歸納和整理是改善學(xué)習(xí)的重要方法.善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,把相關(guān)知識歸納整理如下:

(1)請你根據(jù)以上方框中的內(nèi)容在下面數(shù)字序號后寫出相應(yīng)的結(jié)論:
          ;②          ;③          ;④          ;
(2)如果點的坐標為,那么不等式的解集是          

查看答案和解析>>


同步練習(xí)冊答案