題目列表(包括答案和解析)
(本題滿分12分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°.動點P、Q同時從點A出發(fā),其中P以4cm/s的速度,沿A→B→C的路線向點C運動;Q以2cm/s的速度,沿A→C的路線向點C運動.當(dāng)P、Q到達(dá)終點C時,整個運動隨之結(jié)束,設(shè)運動時間為t秒.
【小題1】(1)在點P、Q運動過程中,請判斷PQ與對角線AC的位置關(guān)系,并說明理由;
【小題2】(2)點Q關(guān)于菱形ABCD的對角線交點O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N.
①當(dāng)t為何值時,點P、M、N在一直線上?
②當(dāng)點P、M、N不在一直線上時,是否存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
(本題滿分11分)
如圖所示,⊙的直徑,和是它的兩條切線,為射線上的動點(不與重合),切⊙于,交于,設(shè).
(1)求與的函數(shù)關(guān)系式;
(2)若⊙與⊙外切,且⊙分別與
相切于點,求為何值時⊙半徑為1.
(本題滿分7分)如圖,已知一次函數(shù)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)的圖象在第一象限交于C點,CD垂直與x軸,垂足為D.若OA=OB=OD=1,
(1)求點A,B,D的坐標(biāo);
(2)求一次函數(shù)和反比例函數(shù)的解析式。
(本題滿分13分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM.
⑴ 求證:△AMB≌△ENB;
⑵ ①當(dāng)M點在何處時,AM+CM的值最;
②當(dāng)M點在何處時,AM+BM+CM的值最小,并說明理由;
⑶ 當(dāng)AM+BM+CM的最小值為時,求正方形的邊長.
(本題滿分12分)如圖,直線l1的解析表達(dá)式為:,且l1與x軸
交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C.
1.(1)求直線l2的函數(shù)關(guān)系式;
2.(2)求△ADC的面積;
3.(3)若點H為坐標(biāo)平面內(nèi)任意一點,在坐標(biāo)平面內(nèi)是否存在這樣的點H,使以A、D、C、H為頂點的四邊形是平行四邊形?若存在,請直接寫出點H的坐標(biāo);若不存在,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com