A.≥一2 B.<一2 C.>一2 D.≤一2 查看更多

 

題目列表(包括答案和解析)

已知一元二次方程x2+bx-3=0的一根為-3,在二次函數(shù)y=x2+bx-3的圖象上有三點(diǎn)(-,y1)、(-,y2)、(-,y3),y1、y2、y3的大小關(guān)系是    (    )
A.y1<y2<y3 B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2

查看答案和解析>>

某汽車制造廠開發(fā)一款新式電動汽車,計(jì)劃一年生產(chǎn)安裝240輛。由于抽調(diào)不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過培訓(xùn)后上崗,也能獨(dú)立進(jìn)行電動汽車的安裝.生產(chǎn)開始后,調(diào)研部門發(fā)現(xiàn):1名熟練工和2名新工人每月可安裝8輛電動汽車;2名熟練工和3名新工人每月可安裝14輛電動汽車.
(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?
(2)如果工廠招聘n(0<n<10)名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?
(3)在(2)的條件下,工廠給安裝電動汽車的每名熟練工每月發(fā)2000元的工資,給每名新工人每月發(fā)1200元的工資,那么工廠應(yīng)招聘多少名新工人,使新工人的數(shù)量多于熟練工,同時工廠每月支出的工資總額W(元)盡可能的少?

查看答案和解析>>

(2011貴州六盤水,25,16分)如圖10所示,Rt△ABC是一張放在平面直角坐標(biāo)系中的紙片,點(diǎn)C與原點(diǎn)O重合,點(diǎn)A在x軸的正半軸上,點(diǎn)B在y軸的正半軸上,已知OA=3,OB=4。將紙片的直角部分翻折,使點(diǎn)C落在AB邊上,記為D點(diǎn),AE為折痕,E在y軸上。

(1)在圖10所示的直角坐標(biāo)系中,求E點(diǎn)的坐標(biāo)及AE的長。

(2)線段AD上有一動點(diǎn)P(不與A、D重合)自A點(diǎn)沿AD方向以每秒1個單位長度向D點(diǎn)作勻速運(yùn)動,設(shè)運(yùn)動時間為t秒(0<t<3),過P點(diǎn)作PM∥DE交AE于M點(diǎn),過點(diǎn)M作MN∥AD交DE于N點(diǎn),求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當(dāng)t取何值時,S有最大值?最大值是多少?

(3)當(dāng)t(0<t<3)為何值時,A、D、M三點(diǎn)構(gòu)成等腰三角形?并求出點(diǎn)M的坐標(biāo)。

 

查看答案和解析>>

有一枚均勻的正四面體,四個面上分別標(biāo)有數(shù)字l,2,3,4,小紅隨機(jī)地拋擲一次,把著地一面的數(shù)字記為x;另有三張背面完全相同,正面上分別寫有數(shù)字一2,一l,1的卡片,小亮將其混合后,正面朝下放置在桌面上,并從中隨機(jī)地抽取一張,把卡片正面上的數(shù)字記為y;然后他們計(jì)算出的值.
【小題1】用樹狀圖或列表法表示出S的所有可能情況;
【小題2】分別求出當(dāng)S=0和S<2時的概率.

查看答案和解析>>

已知AOB=90°,OMAOB的平分線,按以下要求解答問題:

1)如圖1,將三角板的直角頂點(diǎn)P在射線OM上移動,兩直角邊分別與OA,OB交于點(diǎn)C,D

比較大。PC______PD(選擇“>”“<”“=”填空);

證明中的結(jié)論.

2)將三角板的直角頂點(diǎn)P在射線OM上移動,一直角邊與邊OA交于點(diǎn)C,且OC=1,另一直角邊與直線OB,直線OA分別交于點(diǎn)D,E,當(dāng)以P,C,E為頂點(diǎn)的三角形與OCD相似時,試求的長.(提示:請先在備用圖中畫出相應(yīng)的圖形,再求的長).

 

 

查看答案和解析>>


同步練習(xí)冊答案