題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
1-15 D AC AC A ABAA BC
13. 14.40 15.或
16.
17.證明:(Ⅰ)
函數(shù)在上為增函數(shù);
(Ⅱ)反證法:假設(shè)存在,滿足
則
這與矛盾,假設(shè)錯(cuò)誤
故方程沒有負(fù)數(shù)根
18.解:依題意有:= a,
=2ax+ (x<2)
方程為=0
與圓相切 =
a=
19.解:(Ⅰ), ……………………………2分
∴, ……………………………3分
又, ……………………………4分
∴曲線在處的切線方程為, …………5分
即. …………………6分
(Ⅱ)由消去得,解得,,……7分
所求面積, …………9分
設(shè),則, …………10分
∴
. ……………………12分
21.(1)當(dāng)時(shí),當(dāng)時(shí),.
由條件可知,,即解得
∵ ………….5分
(2)當(dāng)時(shí),
即
故m的取值范圍是 …………….12分
22. 解:(I)因?yàn)?sub>,所以 ----1分
,
解得, ------------------------3分
此時(shí),
當(dāng)時(shí),當(dāng)時(shí), ----------5分
所以時(shí)取極小值,所以符合題目條件; ----------6分
(II)由得,
當(dāng)時(shí),,此時(shí),,
,所以是直線與曲線的一個(gè)切點(diǎn); -----8分
當(dāng)時(shí),,此時(shí),,
,所以是直線與曲線的一個(gè)切點(diǎn); -----------10分
所以直線l與曲線S相切且至少有兩個(gè)切點(diǎn);
對(duì)任意x∈R,,
所以
因此直線是曲線的“上夾線”. ---------------------14分
22.【解】(Ⅰ)
∴的增區(qū)間為,減區(qū)間為和.
極大值為,極小值為.…………4′
(Ⅱ)原不等式可化為由(Ⅰ)知,時(shí),的最大值為.
∴的最大值為,由恒成立的意義知道,從而…8′
(Ⅲ)設(shè)
則.
∴當(dāng)時(shí),,故在上是減函數(shù),
又當(dāng)、、、是正實(shí)數(shù)時(shí),
∴.
由的單調(diào)性有:,
即.…………12′
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com